Sticky tape and simulations help assess microplastic risk

Tiny pieces of plastic, now ubiquitous in the marine environment, have long been a cause of concern for their ability to absorb toxic substances and potentially penetrate the food chain. Now scientists are beginning to understand the level of threat posed to life, by gauging the extent of marine accumulation and tracking the movement of these contaminants. (…)

N. Grover, Horizon EU magazine, 23/04/2018

The news


Interaction of toxic chemicals with microplastics: A critical review

Occurrence of microplastics (MPs) in the environment has attracted great attention as it has become a global concern. This review aims to systematically demonstrate the role of marine microplastic as a novel medium for environmental partitioning of chemicals in the ocean, which can cause toxic effects in the ecological environment. This review assimilated and analyzed available data published between 1972 and 2017 on the interaction between MPs and selected chemicals. Firstly, the review analyzes the occurrence of chemicals in MPs and outlines their distribution patterns. Then possible mechanisms of the interaction between MPs and organic chemicals and potential controlling factors were critically studied. Finally, the hazards of MPs and affiliated organic chemicals to marine organisms were shortly summarized.

F. Wang, C. S. Wong, D. Chen and al., Water Research, Volume 139, 1 August 2018, Pages 208-219

The article

The effects of trophic transfer and environmental factors on microplastic uptake by plaice, Pleuronectes plastessa, and spider crab, Maja squinado

Microplastic pollution is apparent throughout the marine environment from deep ocean sediments to coastal habitats. Most of this is believed to originate on land, although marine activities, such as fishing and shipping, also contribute to the release and redistribution of microplastic. The relative importance of these maritime plastic sources, the manner by which they are distributed in the environment, and their effect on uptake by marine organisms are yet to be fully quantified. In this study, the relative impact of fishing activities on microplastic uptake by demersal fish and crustaceans was explored. Local fishing intensity, proximity to land and mean water velocity are compared to microplastic uptake in plaice, Pleuronectes platessa, and spider crab, Maja squinado, from the Celtic Sea. Observations were also made of microplastic contamination in ingested sand eels, Ammodytes tobianus, to establish a potential route of trophic transfer. This study is the first to identify microplastic contamination in spider crab and to document trophic transfer in the wild. Individuals were sampled from sites of varied fishing intensity in the Celtic Sea, and their stomach contents examined for the presence of microplastic. Contamination was observed in 50% of P. platessa, 42.4% of M. squinado, and 44.4% of A. tobianus. Locations of highest plastic abundance varied between P. platessa and M. squinado, indicating that different factors influence the uptake of microplastic in these two taxa. No significant link was observed between fishing effort and microplastic abundance; however, proximity to land was linked to increased abundance in M. squinado and Observations of whole prey demonstrate ongoing trophic transfer from A. tobianus to P. platessa. The lack of significant difference in microplastic abundance between predator and prey suggests that microplastic is not retained by P. platessa.

N. A. Welden, B. Abylkhani, L. M. Howarth, Environmental Pollution, Volume 239, August 2018, Pages 351–358

The article

Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal

Microplastics (MPs) are the most numerous debris reported in marine environments and assessment of the amounts of MPs that accumulate in wild organisms is necessary for risk assessment. Our objective was to assess MP contamination in mussels collected around the coast of Scotland (UK) to identify characteristics of MPs and to evaluate risk of human exposure to MPs via ingestion of mussels. We deployed caged mussels (Mytilus edulis) in an urbanised estuary (Edinburgh, UK) to assess seasonal changes in plastic pollution, and collected mussels (Mytilus spp and subtidal Modiolus modiolus) from eight sampling stations around Scotland to enumerate MP types at different locations. We determined the potential exposure of humans to household dust fibres during a meal to compare with amounts of MPs present in edible mussels. The mean number of MPs in M. modiolus was 0.086 ± 0.031 (SE, n = 6)/g ww (3.5 ± 1.29 (SE) per mussel). In Mytilus spp, the mean number of MPs/g ww was 3.0 ± 0.9 (SE, n = 36) (3.2 ± 0.52 (SE) per mussel), but weight dependent. The visual accuracy of plastic fibres identification was estimated to be between 48 and 50%, using Nile Red staining and FT-IR methodologies, respectively, halving the observed amounts of MPs in wild mussels. We observed an allometric relationship between the number of MPs and the mussels wet weight. Our predictions of MPs ingestion by humans via consumption of mussels is 123 MP particles/y/capita in the UK and can go up to 4620 particles/y/capita in countries with a higher shellfish consumption. By comparison, the risk of plastic ingestion via mussel consumption is minimal when compared to fibre exposure during a meal via dust fallout in a household (13,731–68,415 particles/Y/capita).

A. I. Catarino, V. Macchia, W. G. Sanderson and al., Environmental Pollution, Volume 237, June 2018, Pages 675–684

The article

Microplastic ingestion by Daphnia magna and its enhancement on algal growth

The rapid increase in plastic use over the last few decades has resulted in plastic pollution in freshwater and marine ecosystems. However, more attention has been paid to plastic pollution in marine ecosystems than to freshwater ecosystems. This research determined microplastic ingestion by Daphnia magna and the potential effect of microplastics on the organism’s survival and reproduction. The study also examined the potential of microplastics to enhance algal growth in support of understanding effects of microplastic ingestion on the organism. When exposed to 25, 50, and 100 mg/L fluorescent green polyethylene microbeads at size of 63–75 μm, D. magna ingested significant amount of plastic microbeads. The number of ingested beads increased with increasing particle concentration and exposure time. However, no significant effect on survival and reproduction was observed although the gut of D. magna was filled with plastic microbeads. In the algal experiment, Raphidocelis subcapitata grew more in the exposure media with the present of plastic microbeads than without plastic microbeads. This result suggests that plastic microbeads could serve as substrates for R. subcapitata to grow. Raphidocelis subcapitata then could be transferred to the organism’s gut and provided energy for survival and reproduction. Results of the present study add to the literature of microplastic ingestion by aquatic organisms. Caution should be taken when interpreting hazards of microplastics based on ingestion, such as the measurement unit and the presence of algae in the environment.

P. M. Canniff, T. C. Hoang, Science of The Total Environment, Volume 633, 15 August 2018, Pages 500–507

The article

The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax)

When microplastics pollute fish habitats, it may be ingested by fish, thereby contaminating fish with sorbed contaminants. The present study investigates how combinations of halogenated contaminants and microplastics associated with feed are able to alter toxicokinetics in European seabass and affect the fish. Microplastic particles (2%) were added to the feed either with sorbed contaminants or as a mixture of clean microplastics and chemical contaminants, and compared to feed containing contaminants without microplastics. For the contaminated microplastic diet, the accumulation of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in fish was significantly higher, increasing up to 40 days of accumulation and then reversing to values comparable to the other diets at the end of accumulation. The significant gene expression results of liver (cyp1a, il1β, gstα) after 40 days of exposure indicate that microplastics might indeed exacerbate the toxic effects (liver metabolism, immune system, oxidative stress) of some chemical contaminants sorbed to microplastics. Seabass quickly metabolised BDE99 to BDE47 by debromination, probably mediated by deiodinase enzymes, and unlike other contaminants, this metabolism was unaffected by the presence of microplastics. For the other PCBs and BFRs, the elimination coefficients were significantly lower in fish fed the diet with contaminants sorbed to microplastic compared to the other diets. The results indicate that microplastics affects liver detoxification and lipid distribution, both of which affect the concentration of contaminants.

Kit Granby, Sandra Rainieri, Rie Romme Rasmussen and al., Environmental Research, Volume 164, July 2018, Pages 430-443

The article

Fate of Nanoplastics in Marine Larvae: A Case Study Using Barnacles, Amphibalanus amphitrite

The exposure of nanoplastics was investigated by observing their interaction with Amphibalanus amphitrite (commonly known as acorn barnacles). Poly(methyl methacrylate) (PMMA) and fluorescent perylene tetraester (PTE) dye were used to prepare highly fluorescent nanoplastic particles. At concentrations of 25 ppm, the PMMA particles showed no detrimental impact on barnacle larvae and their microalgae feed, Tetraselmis suecica and Chaetoceros muelleri. PMMA nanoplastics were ingested and translocated inside the body of the barnacle nauplii within the first 3 hours of incubation. The fluorescent PMMA particles inside the transparent nauplius were tracked using confocal fluorescence microscopy. Subsequently, the nanoplastics were fed to the barnacles under two conditions – acute and chronic exposure. The results from acute exposure show that nanoplastics persist in the body throughout stages of growth and development – from nauplius to cyprid and juvenile barnacle. Some egestion of nanoplastics was observed through moulting and faecal excrement. In comparison, chronic exposure demonstrates bioaccumulation of the nanoplastics even at low concentrations of the plastics. The impacts of our study using PMMA nanoparticles exceeds current knowledge, where most studies stop at uptake and ingestion. Here we demonstrate that uptake of nanoparticles during planktonic larval stages may persist to the adult stages, indicating the potential for the long-term impacts of nanoplastics on sessile invertebrate communities.

Samarth Bhargava, Serina Siew Chen Lee, Lynette Shu Min Ying, Mei Lin Neo, Serena Lay-Ming Teo, and Suresh Valiyaveettil, ACS Sustainable Chem. Eng., Just Accepted Manuscript, March 21, 2018