Targeted quantification and untargeted screening of alkylphenols, bisphenol A and phthalates in aquatic matrices using ultra-high-performance liquid chromatography coupled to hybrid Q-Orbitrap mass spectrometry

Plasticizers and other plastics additives have been extensively used as ingredients of plastics and are as a result thereof easily released in the aquatic environment, due to different physical diffusion processes. In this context, a dedicated method was developed for the simultaneous quantification of 27 known and a virtually unlimited number of unknown alkylphenols, Bisphenol A and phthalates in 2 aquatic matrices, i.e. sea- and freshwater. To this extent, a novel instrumental HESI-UHPLC-HRMS (heated electro-spray ionization ultra-high performance liquid chromatographic high resolution mass spectrometric) method was devised for the simultaneous analysis of 7 phenols (i.e. 6 alkylphenols and Bisphenol A) and 20 phthalates within 10 min. Thereafter, a solid-phase extraction protocol was statistically (95% confidence interval, p > 0.05) optimized based on experimental designs. The method was proven fit-for-purpose through a successful validation at environmentally relevant nanomolar concentrations. Analytical precautions were taken for minimizing false-positive results to suppress in-house contamination. The method demonstrated an excellent analytical performance across all known plasticizers and plastics additives for sea- and freshwater, revealing good linearity (R2 > 0.99, n = 39), stable recoveries (98.5–105.8%), satisfactory repeatability (RSD < 8%, n = 54) and reproducibility (RSD < 10%, n = 36). Subsequently, a novel analytical strategy was devised for the tentative identification of unknown plasticizers and plastics additives using specific in-house determined fragments incorporated in a Python code. The applicability of the analytical platform was demonstrated by measuring 24 seawater samples. Interestingly, 16 out of 27 known plasticizers, plastics additives and primary metabolites could be quantified while the untargeted analysis uncovered 1042 compounds, whereof 5% (n = 46) could be assigned a plasticizer-plastics additive chemical identity, providing evidence for the severe plastic contamination status of our marine environment.

S. Huysman, L. Van Meulebroek, O. Janssens and al., Analytica Chimica Acta, Volume 1049, 21 February 2019, Pages 141-151

The article


More action needed to tackle mixtures of chemicals in Europe’s waters

Despite successes in addressing some of the most hazardous chemicals, more attention is needed to address the danger posed by the ‘cocktail effect’ of lower concentrations of chemicals in European lakes, rivers and other surface water bodies, according to a European Environment Agency (EEA) report released today. (…)

European Environment Agency, 16 January 2019

The news

The report

Transfer of PCBs from microplastics under simulated gut fluid conditions is biphasic and reversible

The role of plastic as a vector for bioaccumulation of toxic chemicals is central to the risk assessment of microplastic for human health and the environment. However, transfer kinetics of sorbed contaminants from ingested microplastics are poorly understood. We develop and parameterise a chemical exchange model on microplastics in a gut fluid mimic of aquatic biota, and also included food to provide a better representation of contaminant dynamics when plastic and food are ingested, as would occur in nature. The transfer kinetics of 14 polychlorinated biphenyls (PCBs) were measured in gut fluid mimic systems under three environmentally relevant exposure scenarios of plastic ingestion by organisms, for low-density polyethylene (LDPE) and polyvinyl chloride (PVC), and were evaluated with the model. Chemical transfer was demonstrated to be biphasic and fully reversible, with fast exchange within hours followed by a slow transfer lasting for weeks to months. In clean gut systems, the bioavailability of plastic-associated PCBs for lugworms and cod ranged from 14-42% and 45-83% respectively. However, in contaminated gut systems, clean microplastic was capable of rapidly extracting (‘cleaning’) PCBs from food inside the gut, thus demonstrating that the effect of microplastic is context dependent. Therefore, chemical contamination and cleaning are likely to occur simultaneously due to the ingestion of microplastic.

Nur Hazimah Mohamed Nor and Albert A. Koelmans, Environ. Sci. Technol., Just Accepted Manuscript, January 14, 2019

The article

Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia

This study aims understand microplastics from personal care and cosmetic products in Malaysia via quantification and characterization of microplastics together with emission estimation to marine environment. A total of 214 respondents from all over Malaysia were surveyed with identification of top ten personal care and cosmetic products usage. Particles found in facial cleaner/scrub and toothpaste were colored and colorless with majority of granular shapes. Particles in toothpaste were found between 3 and 145 μm while particles in facial cleaner/scrub were found to be between 10 and 178 μm, stipulating the presence of microplastics. Plastic polymers (LDPE and polypropylene) were found in all facial cleaner/scrub samples while only plastic polymers (LDPE) were present in toothpaste sample G. A total of 0.199 trillion microplastics are expected to be released annually to marine environment in Malaysia. Personal care and cosmetic products are seen as one of the microplastics sources for Malaysia and worldwide.

S. Mangala Praveena, S. N. M. Shaifuddin, S. Akizuki, Marine Pollution Bulletin, Volume 136, November 2018, Pages 135-140

The article

Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels

The aim of this study was to detect ecotoxicological effects of 0.1 μm polystyrene microbeads in marine organisms belonging to different trophic levels. MP build up, lethal and sub-lethal responses were investigated in the bacterium Vibrio anguillarum (culturability), in the green microalga Dunaliella tertiolecta (growth inhibition), in the rotifer Brachionus plicatilis (mortality and swimming speed alteration) and in the sea urchin Paracentrotus lividus (immobility and swimming speed alteration) exposed to a wide range of microplastic (MP) concentrations (from 0.001 to 10 mg L−1). Survival was not affected in all organisms up to 10 mg L−1, while algal growth inhibition, rotifer and sea urchin larvae swimming behaviour alterations were observed after exposure to MPs. Ingestion was only observed in rotifers and it was directly correlated with sub-lethal effects.

C. Gambardella, S. Morgana, M. Bramini and al., Marine Environmental Research, Volume 141, October 2018, Pages 313-321

The article

Distribution and composition of benthic marine litter on the shelf of Antalya in the eastern Mediterranean

In recent years, the pollution of the seas by the litter has identified as a serious environmental problem. Studies indicate that the majority of the marine litter consists of plastic, which is a result of human actions that also affected by river input, fishing activity and current systems. Thus, this study mainly focused on the distribution and composition of benthic marine litter. The sampling was carried out in Antalya Bay with a demersal trawl. A total of 68 hauls were performed and 370 pieces of 136.3 kg litter were collected. The density values vary between 13.3 and 651.1 n/km−2 and weight values vary between 0.02 and 559 kg/km−2 in overall litter. Distribution, density – weight indices by testing the differences with the depth, season and transect were analysed. Depth had a significant impact on both density and weight indices. Marine litter monitoring program is necessary for offering more solution proposals.

M. Tunca Olguner, C. Olguner, E. Mutlu and al., Marine Pollution Bulletin, Volume 136, November 2018, Pages 171-176

Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax

The present study aimed to evaluate the effects of ~45 nm nanoplastics (NPs) on the marine fish Dicentrarchus labrax after a short-term exposure. Animals were exposed to a concentration range of NPs for 96 h and liver, plasma and skin mucus were sampled. Assessed endpoints included biochemical biomarkers and expression of genes related to lipid metabolism, immune system and general cell stress. Abundance of mRNA transcripts related to lipid metabolism, pparα and pparγ, were significantly increased after exposure to NPs. Biochemical endpoints revealed decreased esterase activity levels in plasma, suggesting that the immune system of fish might be compromised by exposure to NPs. Moreover, significantly lower levels of alkaline phosphatase were found in the skin mucus of animals exposed to NPs. The present results suggest that NPs may represent a hazard to this marine fish, potentially interfering with the metabolism of lipids and the correct function of the immune response.

I. Brandts, M. Teles, A. Tvarijonaviciute and al., Genomics, Volume 110, Issue 6, November 2018, Pages 435-441

The article