Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure

Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10−7 to 1.2 × 10−5 (year−1) for total PBDEs and from 2.9 × 10−7 to 7.2 × 10−6 (year−1) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10–3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.

Hoang Quoc Anh, Vu Duc Nam, Tran Manh Tri, Nguyen Manh Ha, Nguyen Thuy Ngoc, Pham Thi Ngoc Mai, Duong Hong Anh, Nguyen Hung Minh, Nguyen Anh Tuan, Tu Binh Minh, Environmental Geochemistry and Health, August 2017, Volume 39, Issue 4, pp 935–954

The article

Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater -field and laboratory experiments

Expanded polystyrene (EPS) is a major component of marine debris globally. Recently, hazardous hexabromocyclododecanes (HBCDDs) were detected in EPS buoys used for aquaculture farming. Subsequently, enrichment of HBCDDs was found in nearby marine sediments and mussels growing on EPS buoys. It was suspected that EPS buoys and their debris might be sources of HBCDDs. To confirm this, the release of HBCDDs from EPS spherules detached from a buoy to seawater was investigated under field (open sea surface and closed outdoor chambers with sun exposure and in the dark) and laboratory (particle-size) conditions. In all exposure groups, initial rapid leaching of HBCDDs was followed by slow desorption over time. Abundant release of HBCDDs was observed from EPS spherules exposed to the open sea surface (natural) and on exposure to sunlight irradiation or in the dark in controlled saline water. Water leaching and UV-light/temperature along with possibly biodegradation were responsible for about 37% and 12% of HBCDDs flux, respectively. Crumbled EPS particles (≤ 1 mm) in samples deployed on the sea surface for 6 months showed a high degree of weathering. This implies that surface erosion and further fragmentation of EPS via environmental weathering could enhance the leaching of HBCDDs from the surface of EPS. Overall, in the marine environment, HBCDDs could be released to a great extent from EPS products and their debris due to the cumulative effects of the movement of large volumes of water (dilution), biodegradation, UV-light/temperature, wave action (shaking), salinity and further fragmentation of EPS spherules.

Manviri Rani, Won Joon Shim, Mi Jang and al., Chemosphere, Available online 11 July 2017, In Press, Accepted Manuscript

The article

Release of polyester and cotton fibers from textiles in machine washings

Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 105 to 1.3 × 107 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 1014) and 411,000 kg (4.9 × 1014) in Finland (population 5.5 × 106). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.

Markus SillanpääPirjo Sainio, Environmental Science and Pollution Research, pp 1–9, July, 01, 2017

The article

The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins

Highlights

• Toxicity of virgin PS and HDPE particles and their leachates was investigated.
• Virgin microplastics are toxic to sea urchin embryo through the leaching of chemicals.
• Our results highlight the necessity to wash or weather virgin microplastics before toxicity testing.

Concepción Martínez-Gómez, Víctor M. León, Susana Calles, Marina Gomáriz-Olcina, A. Dick Vethaak, Marine Environmental Research, Available online 30 June 2017, In Press

The article

Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets

This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats.

Mara Fisner, Alessandra Majer, Satie Taniguchi, Márcia Bícego, Alexander Turra, Daniel Gorman, Marine Pollution Bulletin, Available online 3 July 2017, In Press

The article

Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.)

It is a long-recognized fact that marine plastic debris contaminates the oceans and seas of the entire world. Even though their effects on the aquatic biota are not well documented or understood. The effects of dietary polyvinylchloride microparticles (PVC-MPs) on the general health, immune status and some stress markers were studied using gilthead seabream (Sparus aurata) as a model of marine fish. Thirty specimens were randomly placed in three running sea water aquaria and fish in each aquarium received an experimental diet containing 0 (control), 100 or 500 mg kg−1 of PVC-MPs for 30 days. Metabolic parameters in serum indicated that the dietary intake of PVC-MPs negatively affected several vital organs. Humoral immune parameters were determined in serum and skin mucus. Cellular immune parameters were determined in head-kidney leucocytes. Concomitantly, the expression of different genes related to stress was studied in head-kidney and liver. Regarding head-kidney gene expression, prdx5 was significantly decreased by PVC-MPs intake for 15 and 30 days, respect to the values found in control fish. On the other hand, the expression of prdx1 and prdx3 were significantly increased by the PVC-MPs intake during 15 and 30 days, compared with the values found in control fish. Furthermore, the expression of hsp90 and ucp1 genes decreased and increased, respectively, in the liver of fish fed 500 mg kg−1 of PVC-MPs for 30 days. Although ingestion of PVC-MPs provoked few significant effects (mostly increases) in the main immune activities of gilthead seabream compared with the values found in control fish, PVC-MPs are recognized by the fish as stressors. Continued exposure of fish to high concentrations of PVC-MPs could have a negative impact on fish physiology due to the chronic stress produced.

Cristóbal Espinosa, Alberto Cuesta, María Ángeles Esteban, Fish & Shellfish Immunology, Available online 3 July 2017, In Press

The article

Microplastics effects in Scrobicularia plana

One of the most common plastics in the marine environment is polystyrene (PS) that can be broken down to micro sized particles. Marine organisms are vulnerable to the exposure to microplastics. This study assesses the effects of PS microplastics in tissues of the clam Scrobicularia plana. Clams were exposed to 1 mg L− 1 (20 μm) for 14 days, followed by 7 days of depuration. A qualitative analysis by infrared spectroscopy in diffuse reflectance mode period detected the presence of microplastics in clam tissues upon exposure, which were not eliminated after depuration. The effects of microplastics were assessed by a battery of biomarkers and results revealed that microplastics induce effects on antioxidant capacity, DNA damage, neurotoxicity and oxidative damage. S. plana is a significant target to assess the environmental risk of PS microplastics.

Francisca Ribeiro, Ana R. Garcia, Beatriz P. Pereira and al., Marine Pollution Bulletin, Available online 4 July 2017, In Press

The article