Freshwater’s macro microplastic problem

Like in the oceans, the bulk of the pollution in rivers and lakes is not in the form of plastic bottles and other large pieces, but tiny pieces called microplastics that would be hard to spot. “Three quarters of what we take out of the Great Lakes are less than a millimeter in size,” she says. “It’s basically the size of a period of a sentence.” These plastics are concerning to scientists because they are being ingested by a variety of aquatic organisms. (…) (, 11/05/2017)

The news

Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China

Microplastic pollution in inland waters is receiving growing attentions. Reservoirs are suspected to be particularly vulnerable to microplastic pollution. However, very limited information is currently available on pollution characteristics of microplastics in reservoir ecosystems. This work studied the distribution and characteristics of microplastics in the backwater area of Xiangxi River, a typical tributary of the Three Gorges Reservoir. Microplastics were detected in both surface water and sediment with concentrations ranging from 0.55 × 105 to 342 × 105 items km–2 and 80 to 864 items m–2, respectively. Polyethylene, polypropylene, and polystyrene were identified in surface water, whereas polyethylene, polypropylene, and polyethylene terephthalate, and pigments were observed in sediment. In addition, microplastics were also detected in the digestion tracts of 25.7% of fish samples, and polyethylene and nylon were identified. Redundancy analysis indicates a weak correlation between microplastics and water quality variables but a negative correlation with water level of the reservoir and Secchi depth. Results from this study confirm the presence of high abundance microplastics in reservoir impacted tributaries, and suggest that water level regulated hydrodynamic condition and input of nonpoint sources are important regulators for microplastic accumulation and distribution in the backwater area of reservoir tributaries.

Kai Zhang, Xiong Xiong, Hongjuan Hu and al., Environ. Sci. Technol., 2017, 51 (7), pp 3794–3801

The article

Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities

Plastic debris is an environmentally persistent and complex contaminant of increasing concern. Understanding the sources, abundance and composition of microplastics present in the environment is a huge challenge due to the fact that hundreds of millions of tonnes of plastic material is manufactured for societal use annually, some of which is released to the environment. The majority of microplastics research to date has focussed on the marine environment. Although freshwater and terrestrial environments are recognised as origins and transport pathways of plastics to the oceans, there is still a comparative lack of knowledge about these environmental compartments. It is highly likely that microplastics will accumulate within continental environments, especially in areas of high anthropogenic influence such as agricultural or urban areas. This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, also draws on relevant studies from other fields including nanotechnology, agriculture and waste management. Furthermore, we evaluate the relevant biological and chemical information from the substantial body of marine microplastic literature, determining the applicability and comparability of this data to freshwater and terrestrial systems. With the evidence presented, the authors have set out the current state of the knowledge, and identified the key gaps. These include the volume and composition of microplastics entering the environment, behaviour and fate of microplastics under a variety of environmental conditions and how characteristics of microplastics influence their toxicity. Given the technical challenges surrounding microplastics research, it is especially important that future studies develop standardised techniques to allow for comparability of data. The identification of these research needs will help inform the design of future studies, to determine both the extent and potential ecological impacts of microplastic pollution in freshwater and terrestrial environments.

Alice A. Horton, Alexander Walton, David J. Spurgeon, Elma Lahive, Claus Svendsen, Science of The Total Environment, Volume 586, 15 May 2017, Pages 127–141

The article

Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through Consumption of Fish from U.S. Rivers

U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008–2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption.

Angela L. Batt, John B. Wathen, James M. Lazorchak, Anthony R. Olsen, and Thomas M. Kincaid,  Environ. Sci. Technol., Article ASAP, February 23, 2017

Plastic litter in aquatic environments of Maremma Regional Park (Tyrrhenian Sea, Italy): Contribution by the Ombrone river and levels in marine sediments

During two surveys in 2015 and 2016, sediments samples were collected along the Ombrone river (Maremma Regional Park, province of Grosseto, Italy), in particular at its mouth and in the marine area in front of it, in order to quantify, identify and categorize plastic items (macro, meso and micro-plastics and colour, material etc.) and evaluate their potential sources. The Albegna and Osa rivers were identified as external areas of comparison. The results of the analysis showed different situations, especially as regards fluvial inputs, in addition to evidencing local provisions of plastic material derived from agricultural activities. The microplastics values per kg of sediment and the prevailing type of items found largely varied between the investigated sites (45–1069 items/kg dry sample).

Cristiana Guerranti, Susanna Cannas, Costanza Scopetani and al, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 366–370

The article

Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals

While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by μ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load.

Jundong Wang, Jinping Peng, Zhi Tan and al.,Chemosphere, Volume 171, March 2017, Pages 248–258

The article