Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures

Our aim was to quantify microplastic ingestion by fish assemblages in two tropical Brazilian estuaries and to evaluate whether biological and ecological factors influence the ingestion of microplastics by fish species. Of 2233 fish from both estuaries (from 69 species) examined in this study, 9% of the individuals (24 species) had microplastics in their gut contents. Microplastic ingestion occurred irrespective of fish size and functional group. The diet of fish species was analyzed based on prey items identified in the fish’s full stomach contents and five feeding guilds were defined. Microplastics were common throughout all feeding guilds. Low (average ingestion values 1.06 ± 0.30 items/total fish) but widespread occurrence among estuaries also indicates proliferation of microplastic pollution. Our findings highlight the need to focus on assemblage level studies to understand the real magnitude of the problem and emphasize the urgency of mitigation measures directed at microplastic pollution in estuarine ecosystems.

A.L. Vendel, F. Bessa, V.E.N. Alves, A.L.A. Amorim, J. Patrício, A.R.T. Palma, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 448–455

The article

Assessment of marine debris on the coastal wetland of Martil in the North-East of Morocco

Plastic waste at the coastal wetland in Martil beach in the North-East of Morocco is one of the problems that have appeared recently. This study aims to characterize the marine debris in the coast of Martil during the year 2015. The sampling is seasonally by type and size. The result shows, for the macro debris, the abundance of plastic (57%), lumber and paper (21.93%), cloth and fabric (7.8%), glass (5.42%), metal (4.40%), and rubber (3.4%). Micro debris is also present in the area in several forms such as wood, plants, and others by 75,63%. This was followed by the foam (26,95%), line (7,8%), and the film (1,23%). The seasonal variation (S1: January–March and S3: July to September) are the most polluted months of the year. The sources of marine debris are mainly tourism (beach users), land (run off), and commercial fishing in the four seasons of the year.

Adel Alshawafi, Mohamed Analla, Ebrahim Alwashali, Mustapha Aksissou, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 302–310

The article

Freshwater’s macro microplastic problem

Like in the oceans, the bulk of the pollution in rivers and lakes is not in the form of plastic bottles and other large pieces, but tiny pieces called microplastics that would be hard to spot. “Three quarters of what we take out of the Great Lakes are less than a millimeter in size,” she says. “It’s basically the size of a period of a sentence.” These plastics are concerning to scientists because they are being ingested by a variety of aquatic organisms. (…) (pbs.org, 11/05/2017)

The news

Seasonal and spatial variations of marine litter on the south-eastern Black Sea coast

The south-eastern Black Sea coast in Turkey was evaluated for marine litter composition and density covering nine beaches during four seasons. The marine litter (> 2 cm in size), was collected from the coast and categorized into material and usage categories. The data analysis showed that plastic was the most abundant litter (≥ 61.65%) by count and weight followed by styrofoam and fabric. The marine litter density ranged from 0.03 to 0.58 with a mean (± SD) of 0.16 ± 0.02 items/m2 by count. Based on weight, it varied between 0.44 and 14.74 g/m2 with 3.35 ± 1.63. The east side had a higher marine litter density than the west side with significant differences between beaches. The variations due to different seasons were not significant for any beach. The results of this study should provide baseline information about the coastal marine pollution and will assist the mitigation strategies.

Yahya Terzi, Kadir Seyhan, Marine Pollution Bulletin, Available online 10 May 2017, In Press

The article

Is the feeding type related with the content of microplastics in intertidal fish gut?

Microplastics pollution is a growing global concern that affects all aquatic ecosystems. Microplastics in the environment can be in the form of fibers and/or particles, being the former the most abundant in the marine environment, representing up to 95% of total plastics. The aim of this work was to compare the content of microplastics among intertidal fish with different feeding type.

Our results show that omnivorous fish presented a higher amount of microplastic fibers than registered in herbivores and carnivores. Moreover, lower condition factors (K) were found in omnivorous specimens with higher microplastic content. We hypothesized that the type of feeding resulted in different microplastic ingestion, with species with wider range of food sources as omnivores with higher rates. Futures studies carried out to evaluate the biological impacts of microplastics on marine organisms, and microplastics cycling on the marine environment should consider the type of feeding of the studied species.

Ricardo Mizraji, Camila Ahrendt, Diego Perez-Venegas and al., Marine Pollution Bulletin, Volume 116, Issues 1–2, 15 March 2017, Pages 498–500

Coastal debris analysis in beaches of Chonburi Province, eastern of Thailand as implications for coastal conservation

This study quantified coastal debris along 3 beaches (Angsila, Bangsaen, Samaesarn) in eastern coast of Thailand. Debris samples were collected from lower and upper strata of these beaches during wet and dry seasons. The results showed that Bangsaen had the highest average debris density (15.5 m− 2) followed by Samaesarn (8.10 m− 2), and Angsila (5.54 m− 2). Among the 12 debris categories, the most abundant debris type was plastics (> 45% of the total debris) in all beach locations. Coastal debris distribution was related to economic activities in the vicinity. Fishery and shell-fish aquaculture activities were primary sources of debris in Angsila while tourism activities were main sources in Bangsaen and Samaesarn. Site-specific pollution control mechanisms (environmental awareness, reuse and recycling) are recommended to reduce public littering. Management actions in Angsila should focus on fishery and shell-fish culture practices, while Bangsaen and Samaesarn should be directed toward leisure activities promoting waste management.

Gajahin Gamage Nadeeka Thushari, Suchana Chavanich, Amararatne Yakupitiyage, Marine Pollution Bulletin, Volume 116, Issues 1–2, 15 March 2017, Pages 121–129

The article

The plastic in microplastics: A review

Microplastics [MPs], now a ubiquitous pollutant in the oceans, pose a serious potential threat to marine ecology and has justifiably encouraged focused biological and ecological research attention. But, their generation, fate, fragmentation and their propensity to sorb/release persistent organic pollutants (POPs) are determined by the characteristics of the polymers that constitutes them. Yet, physico-chemical characteristics of the polymers making up the MPs have not received detailed attention in published work. This review assesses the relevance of selected characteristics of plastics that composes the microplastics, to their role as a pollutant with potentially serious ecological impacts. Fragmentation leading to secondary microplastics is also discussed underlining the likelihood of a surface-ablation mechanism that can lead to preferential formation of smaller sized MPs.

Anthony L. Andrady, Marine Pollution Bulletin, Available online 24 April 2017, In Press

The article