Arctic sea ice is an important temporal sink and means of transport for microplastic

Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

Ilka Peeken, Sebastian Primpke, Birte Beyer, Julia Gütermann, Christian Katlein, Thomas Krumpen, Melanie Bergmann, Laura Hehemann,  Gunnar Gerdts, Nature Communications, volume 9, 24 April 2018

The article

Advertisements

Sticky tape and simulations help assess microplastic risk

Tiny pieces of plastic, now ubiquitous in the marine environment, have long been a cause of concern for their ability to absorb toxic substances and potentially penetrate the food chain. Now scientists are beginning to understand the level of threat posed to life, by gauging the extent of marine accumulation and tracking the movement of these contaminants. (…)

N. Grover, Horizon EU magazine, 23/04/2018

The news

Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy – Study of an urban watercourse traversing the city of Berlin, Germany

Highlights

• Fast semi-automated identification of microplastics by SWIR imaging spectroscopy.

• Areally extensive multi-temporal sampling survey.

• Analysis of rainstorm related microplastic input to watercourse.

• Evidence of an urban area as a source of microplastic pollution.

L. K. Schmidt, M. Bochow, H. K. Imhof and al., Environmental Pollution, Volume 239, August 2018, Pages 579–589

The article

The effects of trophic transfer and environmental factors on microplastic uptake by plaice, Pleuronectes plastessa, and spider crab, Maja squinado

Microplastic pollution is apparent throughout the marine environment from deep ocean sediments to coastal habitats. Most of this is believed to originate on land, although marine activities, such as fishing and shipping, also contribute to the release and redistribution of microplastic. The relative importance of these maritime plastic sources, the manner by which they are distributed in the environment, and their effect on uptake by marine organisms are yet to be fully quantified. In this study, the relative impact of fishing activities on microplastic uptake by demersal fish and crustaceans was explored. Local fishing intensity, proximity to land and mean water velocity are compared to microplastic uptake in plaice, Pleuronectes platessa, and spider crab, Maja squinado, from the Celtic Sea. Observations were also made of microplastic contamination in ingested sand eels, Ammodytes tobianus, to establish a potential route of trophic transfer. This study is the first to identify microplastic contamination in spider crab and to document trophic transfer in the wild. Individuals were sampled from sites of varied fishing intensity in the Celtic Sea, and their stomach contents examined for the presence of microplastic. Contamination was observed in 50% of P. platessa, 42.4% of M. squinado, and 44.4% of A. tobianus. Locations of highest plastic abundance varied between P. platessa and M. squinado, indicating that different factors influence the uptake of microplastic in these two taxa. No significant link was observed between fishing effort and microplastic abundance; however, proximity to land was linked to increased abundance in M. squinado and Observations of whole prey demonstrate ongoing trophic transfer from A. tobianus to P. platessa. The lack of significant difference in microplastic abundance between predator and prey suggests that microplastic is not retained by P. platessa.

N. A. Welden, B. Abylkhani, L. M. Howarth, Environmental Pollution, Volume 239, August 2018, Pages 351–358

The article

Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs

We assessed the potential role played by two vital Northeastern Pacific Ocean forage fishes, the Pacific sand lance (Ammodytes personatus) and Pacific herring (Clupea pallasii), as conduits for the vertical transfer of microfibres in food webs. We quantified the number of microfibres found in the stomachs of 734 sand lance and 205 herring that had been captured by an abundant seabird, the rhinoceros auklet (Cerorhinca monocerata). Sampling took place on six widely-dispersed breeding colonies in British Columbia, Canada, and Washington State, USA, over one to eight years. The North Pacific Ocean is a global hotspot for pollution, yet few sand lance (1.5%) or herring (2.0%) had ingested microfibres. In addition, there was no systematic relationship between the prevalence of microplastics in the fish stomachs vs. in waters around three of our study colonies (measured in an earlier study). Sampling at a single site (Protection Island, WA) in a single year (2016) yielded most (sand lance) or all (herring) of the microfibres recovered over the 30 colony-years of sampling involved in this study, yet no microfibres had been recovered there, in either species, in the previous year. We thus found no evidence that sand lance and herring currently act as major food-web conduits for microfibres along British Columbia’s outer coast, nor that the local at-sea density of plastic necessarily determines how much plastic enters marine food webs via zooplanktivores. Extensive urban development around the Salish Sea probably explains the elevated microfibre loads in fishes collected on Protection Island, but we cannot account for the between-year variation. Nonetheless, the existence of such marked interannual variation indicates the importance of measuring year-to-year variation in microfibre pollution both at sea and in marine biota.

J. M. Hipfner, M. Galbraith, S. Tucker and al., Environmental Pollution, Volume 239, August 2018, Pages 215-222

The article

Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts

Microplastics and polycyclic aromatic hydrocarbons (PAHs) were investigated to study the influence of human activities and to find their possible relationship on the coastal environments, where the coastal areas around Xiamen are undergoing intensive processes of industrialization and urbanization in the southeast China. The abundance of microplastics in Xiamen coastal areas was 103 to 2017 particles/m3 in surface seawater and 76 to 333 particles/kg in sediments. Concentrations of dissolved PAHs varied from 18.1 to 248 ng/L in surface seawater. The abundances of microplastics from the Western Harbor in surface seawater and sediments were higher than those from other areas. Foams were dominated in surface seawater samples, however, no foams were found in sediments samples. The microscope selection and FTIR analysis suggested that polyethylene (PE) and polypropylene (PP) were dominant microplastics. The cluster analysis results demonstrated that fibers and granules had the similar sources, and films had considerably correlation with all types of PAHs (3 or 4-ring PAHs and alkylated PAHs). Plastic film mulch from agriculture practice might be a potential source of microplastics in study areas. Results of our study support that river runoff, watershed area, population and urbanization rate influence the distribution of microplastics in estuarine surface water, and the prevalence of microplastic pollution calls for monitoring microplastics at a national scale.

G. Tang, M. Liu, Q. Zhou and al., Science of The Total Environment, Volume 634, 1 September 2018, Pages 811-820

The article

Human footprint in the abyss: 30 year records of deep-sea plastic debris

This study reports plastic debris pollution in the deep-sea based on the information from a recently developed database. The Global Oceanographic Data Center (GODAC) of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) launched the Deep-sea Debris Database for public use in March 2017. The database archives photographs and videos of debris that have been collected since 1983 by deep-sea submersibles and remotely operated vehicles. From the 5010 dives in the database, 3425 man-made debris items were counted. More than 33% of the debris was macro-plastic, of which 89% was single-use products, and these ratios increased to 52% and 92%, respectively, in areas deeper than 6000 m. The deepest record was a plastic bag at 10898 m in the Mariana Trench. Deep-sea organisms were observed in the 17% of plastic debris images, which include entanglement of plastic bags on chemosynthetic cold seep communities. Quantitative density analysis for the subset data in the western North Pacific showed plastic density ranging from 17 to 335 items km−2 at depths of 1092–5977 m. The data show that, in addition to resource exploitation and industrial development, the influence of land-based human activities has reached the deepest parts of the ocean in areas more than 1000 km from the mainland. Establishment of international frameworks on monitoring of deep-sea plastic pollution as an Essential Ocean Variable and a data sharing protocol are the keys to delivering scientific outcomes that are useful for the effective management of plastic pollution and the conservation of deep-sea ecosystems.

S. Chiba, H. Saito, R. Fletcher and al., Marine Policy, Available online 6 April 2018, In Press

The article