Hazardous Chemicals in Plastics in Marine Environments: International Pellet Watch

Marine plastic debris, including microplastics <5 mm, contain additives as well as hydrophobic chemicals sorbed from surrounding seawater. A volunteer-based global monitoring programme entitled International Pellet Watch (IPW) is utilizing the sorptive nature of plastics, more specifically of beached polyethylene (PE) pellets, in order to measure persistent organic pollutants (POPs) throughout the world. Spatial patterns of polychlorinated biphenyls (PCBs) and organochlorine pesticides have been revealed. Original data of IPW show large piece-to-piece variability in PCB concentrations in pellets collected at each location. This is explained by the combination of slow sorption/desorption and large variabilities of speed and route of floating plastics. The sporadically high concentrations of POPs, both sorbed chemicals and hydrophobic additives, are frequently observed in pellets and the other microplastics in open ocean and remote islands. This poses a chemical threat to marine ecosystems in remote areas.

Rei Yamashita, Kosuke Tanaka, Bee Geok Yeo, Hideshige Takada, Jan A. van Franeker, Megan Dalton, Eric Dale, chapter In: The Handbook of Environmental Chemistry. Springer, pp 1-21,

The chapter

Advertisements

Dynamics of plastic resin pellets deposition on a microtidal sandy beach: Informative variables and potential integration into sandy beach studies

Highlights

• Temporal dynamics of plastic resin pellets deposition ashore were investigated.
• Time-related categories depending on weathering of pellets were established.
• It was found a continuous input of pellets, of which about 50% recently released.
• Reduced beach width hosted higher pellets density independently of temporal variables.
• These findings can be integrated in both beach ecology and citizen science.

Lucia Fanini, Fabio Bozzeda, Ecological Indicators, Volume 89, June 2018, Pages 309–316

The article

Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments

Plastic debris represents one of the most prevalent and persistent pollution problems in the marine environment. In particular, microplastics that are mainly degraded from larger plastic debris have become a growing environmental concern. However, studies on the degradation of plastics in the aquatic environment that hydrobios reside in have been limited, while several studies regarding the degradation of plastics have been conducted under outdoor or accelerated weathering conditions. Thus, observation of the degradation of three types of virgin plastic pellets exposed to UV irradiation in three different environments (i.e., simulated seawater, ultrapure water, and a waterless (air) condition) was carried out. Data on the changes in physical and chemical properties were collected. The FTIR spectra showed that hydroxyl groups and carbonyl groups developed in three types of weathered plastic pellets under the air and ultrapure water environmental conditions after 3 months of UV irradiation, while only carbonyl groups were found in plastic pellets in the simulated seawater environment. In contrast, the Raman spectra showed no significant changes in the weathered plastic pellets, but there were different intensities of characteristic peaks after exposure to UV irradiation. In addition, SEM images illustrated that granular oxidation, cracks and flakes were common patterns during degradation, and the plastic pellets in the three different environments experienced different levels of chemical weathering. We suggest that further studies on the degradation processes of plastic debris are needed to predict the fate of plastic debris in the environment.

Liqi Cai, Jundong Wang, Jinping Peng, Ziqing Wu, Xiangling Tan, Science of The Total Environment, Volumes 628–629, 1 July 2018, Pages 740–747

The article

Consistent patterns of debris on South African beaches indicate that industrial pellets and other mesoplastic items mostly derive from local sources

Identifying the sources of small plastic fragments is challenging because the original source item seldom can be identified. South Africa provides a useful model system to understand the factors influencing the distribution of beach litter because it has an open coastline with four equally-spaced urban-industrial centres distant from other major source areas. We sampled mesodebris (∼2–25 mm) at 82 South African beaches in 1994, 2005 and 2015. Plastic items comprised 99% by number and 95% by mass of litter items. Industrial pellets were the most abundant plastic items, but fragments of rigid plastic items comprised most of the mass of debris. Strong correlations between industrial pellets and other plastic items indicate that common factors influence the distribution of both pellets and secondary mesoplastics. The abundance of mesodebris at beaches also was correlated in successive surveys, suggesting that beach-specific factors (e.g. aspect, slope, local currents, etc.) influence the amounts of debris on each beach. Sample year had no effect on mesodebris abundance, indicating that there has been little change in the amounts of mesodebris over the last two decades. There were consistently higher densities of both industrial pellets and other plastic items at beaches close to urban-industrial centres; there were only weak correlations with human population density and no correlation with local runoff. The size of industrial pellets decreased away from local urban centres, further supporting the conclusion that, like macroplastic litter, most mesoplastic pollution on continental beaches derives from local, land-based sources. This finding means that local actions to reduce plastics entering the sea will have local benefits, and that it may be possible to assess the efficacy of mitigation measures to reduce marine inputs of mesoplastic items.

Peter G. Ryan, Vonica Perold, Alexis Osborne, Coleen L. Moloney, Environmental Pollution, Available online 16 February 2018, In Press

The article

The unaccountability case of plastic pellet pollution

Plastic preproduction pellets are found in environmental samples all over the world and their presence is often linked to spills during production and transportation. To better understand how these pellets end up in the environment we assessed the release of plastic pellets from a polyethylene production site in a case study area on the Swedish west coast. The case study encompasses; field measurements to evaluate the level of pollution and pathways, models and drifters to investigate the potential spread and a revision of the legal framework and the company permits. This case study show that millions of pellets are released from the production site annually but also that there are national and international legal frameworks that if implemented could help prevent these spills. Bearing in mind the negative effects observed by plastic pollution there is an urgent need to increase the responsibility and accountability of these spills.

Therese M. Karlsson, Lars Arneborg, Göran Broström and al., Marine Pollution Bulletin, Volume 129, Issue 1, April 2018, Pages 52–60

The article