Video captures moment plastic enters food chain

A scientist has filmed the moment plastic microfibre is ingested by plankton, illustrating how the material is affecting life beneath the waves.
The footage shows one way that waste plastic could be entering the marine and global food chain. An estimated 150 million tonnes of plastic “disappears” from the world’s waste stream each year. Waste plastic in the world’s seas has been recognised by the United Nations as a major environmental problem. (…) (Dr R. Kirby,, 11/03/2017)

The news

Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds

Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (Alle alle), an Arctic seabird feeding on zooplankton while diving between 0 and 50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with 0.99 ± 0.62 m−3 in the presence of sea-ice (2005), and 2.38 ± 1.11 m−3 in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea-ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris.

F. Amélineau, D. Bonnet, O. Heitz, V. Mortreux, A.M.A. Harding, N. Karnovsky, W. Walkusz, J. Fort, D. Grémillet, Environmental Pollution, Volume 219, December 2016, Pages 1131–1139

The article

Prevalence of microplastics in the marine waters of Qatar

Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar’s Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71 particles m− 3 (range 0–3 particles m− 3). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125 μm to 1.82 mm or fibrous with sizes from 150 μm to 15.98 mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present.

Azenith B. Castillo, Ibrahim Al-Maslamani, Jeffrey Philip Obbard, Marine Pollution Bulletin, Volume 111, Issues 1–2, 15 October 2016, Pages 260–267

The article

Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets

Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL–1) and natural prey (∼1650 algae mL–1) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.

Matthew Cole, Penelope K. Lindeque, Elaine Fileman, James Clark, Ceri Lewis, Claudia Halsband, and Tamara S. Galloway, Environ. Sci. Technol., 50 (6), pp 3239–3246, 2016

The article

Research highlights: impacts of microplastics on plankton

Each year, millions of metric tons of the plastic produced for food packaging, personal care products, fishing gear, and other human activities end up in lakes, rivers, and the ocean. The breakdown of these primary plastics in the environment results in microplastics, small fragments of plastic typically less than 1–5 mm in size. These synthetic particles have been detected in all of the world’s oceans and also in many freshwater systems, accumulating in sediment, on shorelines, suspended in surface waters, and being ingested by plankton, fish, birds, and marine mammals. While the occurrence of plastics in surface waters has been surveyed in a number of studies, the impacts of microplastics on marine organisms are still being elucidated. This highlight features three recent publications that explore the interactions of microplastics with planktonic organisms to clarify the effects of these pollutants on some of the ocean’s smallest and most important inhabitants.

Graphical abstract: Research highlights: impacts of microplastics on plankton

Vivian S. Lin, Environ. Sci.: Processes Impacts, 2016,18, 160-163

Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae

Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40 nm anionic carboxylated (PS-COOH) and 50 nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48 h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5–100 μg/ml) resulted massively sequestered inside the gut lumen of larvae (48 h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5–100 µg/ml) accumulated in larvae (48 h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48 h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48 h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs.


Elisa Bergami, Elena Bocci, Maria Luisa Vannuccini, Marco Monopoli, Anna Salvati, Kenneth A. Dawson, Ilaria Corsi, Ecotoxicology and Environmental Safety, Volume 123, January 2016, Pages 18–25, 6th Biannual ECOtoxicology MEeting (BECOME 2014) – Environmental emergencies: ecotoxicology as a management tool

The article


Screening for microplastic particles in plankton samples: How to integrate marine litter assessment into existing monitoring programs?

Microplastics (MPs) are a newly recognized type of environmental pollution in aquatic systems; however no monitoring of these contaminants is conducted, mostly due to the lack of routine quantification. In the net samples collected with a 90-μm WP2 net, pelagic MP abundance was quantified by light microscopy and evaluated as a function of inshore–offshore gradient, depth, and season; the same samples were used for zooplankton analysis. The MP abundance was ∼102–104 particles m−3, with no significant inshore–offshore gradient during summer but increasing offshore in winter. MP abundance in deeper layers was positively affected by zooplankton abundance in the upper layers and significantly lower during winter compared to summer. These findings indicate heterogeneity of MP distribution due to biotic and abiotic factors and suggest that samples collected for other purposes can be used for quantification of MPs in the Baltic Sea, thus facilitating integration of MP assessment into existing monitoring schemes.

Elena Gorokhova, Marine Pollution Bulletin, Volume 99, Issues 1–2, Pages 271–275, 15 October 2015

The article