The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran

Microplastics (MPs; <5 mm) in aquatic environments are an emerging contaminant of concern due to their possible ecological and biological consequences. This study addresses that MP quantification and morphology to assess the abundance, distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide. MPs were found in 80% of the samples. Across all sites, fiber particles were the most dominate shape (88%), followed by films (11.2%) and fragments (0.8%). There were significant differences in MP particle concentration between sampling sites (p value <0.05). The sediments with the highest numbers of MPs were from sites in the vicinity of highly populated centers and municipal effluent discharges. FTIR analysis showed that polyethylene (PE), nylon, and polyethylene terephthalate (PET) were the most abundant polymer types. More than half of the observed MPs (56%) were in the size category of 1–4.7 mm length, with the remaining particles (44%) being in the size range of 10 μm to <1 mm. Compared to literature data from other regions, intertidal sediments in the Persian Gulf cannot be characterized as a hot spot for MP pollution. The present study could, however, provide useful background information for further investigations and management policies to understand the sources, transport, and potential effects on marine life in the Persian Gulf.

Abolfazl Naji, Zinat Esmaili, Sherri A. Mason, A. Dick Vethaak, Environmental Science and Pollution Research, pp 1–10, 14 July 2017

The article

Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets

This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats.

Mara Fisner, Alessandra Majer, Satie Taniguchi, Márcia Bícego, Alexander Turra, Daniel Gorman, Marine Pollution Bulletin, Available online 3 July 2017, In Press

The article

The uptake of macroplastic & microplastic by demersal & pelagic fish in the Northeast Atlantic around Scotland

This study reports plastic ingestion in various fish found from coastal and offshore sites in Scottish marine waters. Coastal samples consisted of three demersal flatfish species (n = 128) collected from the East and West coasts of Scotland. Offshore samples consisted of 5 pelagic species and 4 demersal species (n = 84) collected from the Northeast Atlantic. From the coastal fish sampled, 47.7% of the gastrointestinal tracts contained macroplastic and microplastic. Of the 84 pelagic and demersal offshore fish, only 2 (2.4%) individuals from different species had ingested plastic identified as a clear polystyrene fibre and a black polyamide fibre. The average number of plastic items found per fish from all locations that had ingested plastic was 1.8 (± 1.7) with polyamide (65.3%), polyethylene terephthalate (14.4%) and acrylic (14.4%) being the three most commonly found plastics. This study adds to the existing data on macroplastic and microplastic ingestion in fish species.

Fionn Murphy, Marie Russell, Ciaran Ewins, Brian Quinn, Marine Pollution Bulletin, Available online 10 July 2017, In Press

The article

The effect of microplastic on the uptake of chemicals by the lugworm Arenicola marina (L.) under environmentally relevant exposure conditions

It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (Clip) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics Clip, Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: Clip>BSAF>BPAF>BAF, and were non-significant for BAF. The fact that BAF, i.e. normalization of Clip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies.

Ellen Besseling, Edwin M. Foekema, Martine J. Van Den Heuvel-Greve, and Albert A. Koelmans, Environ. Sci. Technol., Just Accepted Manuscript, July, 6, 2017

Are There Nanoplastics in Your Personal Care Products?

Fragmentation of plastic debris and the commercial use of plastic microbeads have led to the widespread distribution of microplastics in natural environments. Several studies have reported on the occurrence and toxicity of microplastics in soils and waters; however, due to methodological challenges, the presence and impact of nanoplastics (<100 nm) in natural systems have been largely ignored. Microbeads used in consumer products such as scrubs and shampoos are processed by mechanical means that may lead to their fragmentation into potentially more hazardous nanoplastics. In this study, three commercial facial scrubs containing polyethylene microbeads (~0.2 mm diameter) were examined to verify whether they contained nanoplastics. Particulates in the scrubs were fractionated using sequential filtration to isolate particles smaller than 100 nm. Scanning electron microscopy was used to confirm the presence of nanoparticles ranging in size from 24 ± 6 nm to 52 ± 14 nm. X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy were used to confirm that the identified nanoparticles consisted of polyethylene. This study confirms the (unexpected) presence of nanoplastics in personal care products containing polyethylene microbeads and highlights the need for further studies to characterize the release and distribution of nanoplastic litter in natural aquatic and soil environments.

Laura M. Hernandez, Nariman Yousefi, and Nathalie Tufenkji, Environ. Sci. Technol. Lett., 2017, 4 (7), pp 280–285

To what extent are microplastics from the open ocean weathered?

It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5–20 mm) and microplastics (0.3–5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer.

Alexandra ter Halle, Lucie Ladirat, Marion Martignac, Anne Françoise Mingotaud, Olivier Boyron, Emile Perez, Environmental Pollution, Volume 227, August 2017, Pages 167–174

The article

Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella

Plastics are synthetic polymers derived from fossil oil and largely resistant to biodegradation. Polyethylene (PE) and polypropylene (PP) represent ∼92% of total plastic production. PE is largely utilized in packaging, representing ∼40% of total demand for plastic products (www.plasticseurope.org) with over a trillion plastic bags used every year [1] . Plastic production has increased exponentially in the past 50 years ( Figure S1 A in Supplemental Information , published with this article online). In the 27 EU countries plus Norway and Switzerland up to 38% of plastic is discarded in landfills, with the rest utilized for recycling (26%) and energy recovery (36%) via combustion (www.plasticseurope.org), carrying a heavy environmental impact. Therefore, new solutions for plastic degradation are urgently needed. We report the fast bio-degradation of PE by larvae of the wax moth Galleria mellonella, producing ethylene glycol.

Paolo Bombelli, Christopher J. Howe, Federica Bertocchini, Current Biology, Volume 27, Issue 8, pR292–R293, 24 April 2017

The article