Microplastics in livers of European anchovies (Engraulis encrasicolus, L.)

Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field. The study focuses mainly on the European anchovy Engraulis encrasicolus but concerns also the European pilchard Sardina pilchardus and the Atlantic herring Clupea harengus. Two complementary methodologies were used to attest the occurrence of MPs in the hepatic tissue and to exclude contamination. 1) MPs were isolated by degradation of the hepatic tissue. 2) Cryosections were made on the livers and observed in polarized light microscopy. Both methods separately revealed that MPs, mainly polyethylene (PE), were translocated into the livers of the three clupeid species. In anchovy, 80 per cent of livers contained relatively large MPs that ranged from 124 μm to 438 μm, showing a high level of contamination. Two translocation pathways are hypothesized: (i) large particles found in the liver resulted from the agglomeration of smaller pieces, and/or (ii) they simply pass through the intestinal barrier. Further studies are however required to understand the exact process.

France Collard, Bernard Gilbert, Philippe Compere, Gauthier Eppe, Krishna Das,
Thierry Jauniaux, Eric Parmentier, Environmental Pollution,
Volume 229, October 2017, Pages 1000-1005

The article


Microplastic pollution in the surface waters of the Bohai Sea, China

The ubiquitous presence and persistency of microplastics in aquatic environments is of particular concern because these pollutants represent an increasing threat to marine organisms and ecosystems. An identification of the patterns of microplastic distribution will help to understand the scale of their potential effect on the environment and on organisms. In this study, the occurrence and distribution of microplastics in the Bohai Sea are reported for the first time. We sampled floating microplastics at 11 stations in the Bohai Sea using a 330 μm trawling net in August 2016. The abundance, composition, size, shape and color of collected debris samples were analyzed after pretreatment. The average microplastic concentration was 0.33 ± 0.34 particles/m3. Micro-Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were polyethylene, polypropylene, and polystyrene. As the size of the plastics decreased, the percentage of polypropylene increased, whereas the percentages of polyethylene and polystyrene decreased. Plastic fragments, lines, and films accounted for most of the collected samples. Accumulation at some stations could be associated with transport and retention mechanisms that are linked to wind and the dynamics of the rim current, as well as different sources of the plastics.

Weiwei Zhang, Shoufeng Zhang, Juying Wang, Yan Wang, Jingli Mu, Ping Wang, Xinzhen Lin, Deyi Ma, Environmental Pollution, Volume 231, Part 1, December 2017, Pages 541–548

Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids)

The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1–1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems.

L. Pietrelli, A. Di Gennaro, P. Menegoni and al., Environmental Pollution, Volume 229, October 2017, Pages 1032-1036

The article

Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress

A total of 417 striped red mullet, Mullus surmuletus, were analyzed to study microplastic ingestion and livers of fish were assessed to study effects of microplastics. Nearly one third (27.30%) of the individuals were quantified to ingest microplastics although there was no evidence of oxidative stress or cellular damage in the liver of fish which had ingested microplastics. A small increase in the activity of glutathione S-transferase (GST) of M. surmuletus was detected which could be suggesting an induction of the detoxification systems but these findings should be tested in laboratory conditions under a controlled diet and known concentration of microplastics. Fish from trammel fisheries, operating closer to land and targeting larger individuals, showed higher mean ingestion values than fish from trawling fisheries, and were related to body size, as microplastics ingested increased with total fish length. Consequently, ingestion values of microplastics were not related to sampling distance from land giving further evidence of the ubiquity of microplastics in the marine environment. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that the vast majority of microplastics were filament type and polyethylene terephthalate (PET) was the main identified component.

C. Alomar, A Sureda, X. Capo and al., Environmental Research, Volume 159, November 2017, Pages 135-142

The article

The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran

Microplastics (MPs; <5 mm) in aquatic environments are an emerging contaminant of concern due to their possible ecological and biological consequences. This study addresses that MP quantification and morphology to assess the abundance, distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide. MPs were found in 80% of the samples. Across all sites, fiber particles were the most dominate shape (88%), followed by films (11.2%) and fragments (0.8%). There were significant differences in MP particle concentration between sampling sites (p value <0.05). The sediments with the highest numbers of MPs were from sites in the vicinity of highly populated centers and municipal effluent discharges. FTIR analysis showed that polyethylene (PE), nylon, and polyethylene terephthalate (PET) were the most abundant polymer types. More than half of the observed MPs (56%) were in the size category of 1–4.7 mm length, with the remaining particles (44%) being in the size range of 10 μm to <1 mm. Compared to literature data from other regions, intertidal sediments in the Persian Gulf cannot be characterized as a hot spot for MP pollution. The present study could, however, provide useful background information for further investigations and management policies to understand the sources, transport, and potential effects on marine life in the Persian Gulf.

Abolfazl Naji, Zinat Esmaili, Sherri A. Mason, A. Dick Vethaak, Environmental Science and Pollution Research, pp 1–10, 14 July 2017

The article

Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets

This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats.

Mara Fisner, Alessandra Majer, Satie Taniguchi, Márcia Bícego, Alexander Turra, Daniel Gorman, Marine Pollution Bulletin, Available online 3 July 2017, In Press

The article

The uptake of macroplastic & microplastic by demersal & pelagic fish in the Northeast Atlantic around Scotland

This study reports plastic ingestion in various fish found from coastal and offshore sites in Scottish marine waters. Coastal samples consisted of three demersal flatfish species (n = 128) collected from the East and West coasts of Scotland. Offshore samples consisted of 5 pelagic species and 4 demersal species (n = 84) collected from the Northeast Atlantic. From the coastal fish sampled, 47.7% of the gastrointestinal tracts contained macroplastic and microplastic. Of the 84 pelagic and demersal offshore fish, only 2 (2.4%) individuals from different species had ingested plastic identified as a clear polystyrene fibre and a black polyamide fibre. The average number of plastic items found per fish from all locations that had ingested plastic was 1.8 (± 1.7) with polyamide (65.3%), polyethylene terephthalate (14.4%) and acrylic (14.4%) being the three most commonly found plastics. This study adds to the existing data on macroplastic and microplastic ingestion in fish species.

Fionn Murphy, Marie Russell, Ciaran Ewins, Brian Quinn, Marine Pollution Bulletin, Vol. 122 (1-2), 15 September 2017

The article