Pollutant content in marine debris and characterization by thermal decomposition

Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400–500 K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800 K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET).

M.E. Iñiguez, J.A. Conesa, A. Fullana, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 359–365

The article

Contaminated Aquatic Sediments

A review of the literature published in 2015 relating to the assessment, evaluation and remediation of contaminated aquatic sediments is presented. The review is divided into the following main sections: policy and guidance, methodology, distribution, fate and transport, risk, toxicity and remediation.

Jaglal, Kendrick, Water Environment Research, 2016 Literature Review, pp. 1564-1594 (31)

The article

Tracing the Biotransformation of PCBs and PBDEs in Common Carp (Cyprinus carpio) Using Compound-Specific and Enantiomer-Specific Stable Carbon Isotope Analysis

Compound-specific and enantiomer-specific carbon isotope composition was investigated in terms of biotransformation of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) as well as atropisomers of chiral PCB congeners in fish by exposing common carp (Cyprinus carpio) to certain PCB and PBDE congeners. The calculated carbon isotope enrichment factors (εC) for PCB 8, 18, and 45 were −1.99, −1.84, and −1.70‰, respectively, providing evidence of the metabolism of these congeners in fish. The stable carbon isotopic compositions of PBDE congeners clearly reflect the debromination of PBDEs in carp. Significant isotopic fractionation was also observed during the debromination process of BDE 153 (εC = −0.86‰). Stereoselective elimination of chiral PCB congeners 45, 91, and 95 was observed, indicating a stereoselective biotransformation process. The similar εC values for E1-PCB 45 (−1.63‰) and E2-PCB 45 (−1.74‰) indicated that both atropisomers were metabolized by the same reaction mechanisms and stereoselection did not occur at carbon bond cleavage. However, the εC values of (+)-PCB 91 (−1.5‰) and (−)-PCB 95 (−0.77‰) were significantly different from those of (−)-PCB 91 and (+)-PCB 95, respectively. In the latter, no significant isotopic fractionations were observed, indicating that the stereoselective elimination of PCB 91 and 95 could be caused by a different reaction mechanism in the two atropisomers.

Bin Tang, Xiao-Jun Luo, Yan-Hong Zeng, and Bi-Xian Mai, Environ. Sci. Technol., Article ASAP, February 16, 2017

The article

Statistical Survey of Persistent Organic Pollutants: Risk Estimations to Humans and Wildlife through Consumption of Fish from U.S. Rivers

U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008–2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption.

Angela L. Batt, John B. Wathen, James M. Lazorchak, Anthony R. Olsen, and Thomas M. Kincaid,  Environ. Sci. Technol., Article ASAP, February 23, 2017

Differential bioavailability of polychlorinated biphenyls associated with environmental particles: Microplastic in comparison to wood, coal and biochar

Microplastic particles are increasingly being discovered in diverse habitats and a host of species are found to ingest them. Since plastics are known to sorb hydrophobic organic contaminants (HOCs) there is a question of what risk of chemical exposure is posed to aquatic biota from microplastic-associated contaminants. We investigate bioavailability of polychlorinated biphenyls (PCBs) from polypropylene microplastic by measuring solid-water distribution coefficients, gut fluid solubilization, and bioaccumulation using sediment invertebrate worms as a test system. Microplastic-associated PCBs are placed in a differential bioavailability framework by comparing the results to several other natural and anthrogenic particles, including wood, coal, and biochar. PCB distribution coefficients for polypropylene were higher than natural organic materials like wood, but in the range of lipids and sediment organic carbon, and smaller than black carbons like coal and biochars. Gut fluid solubilization potential increased in the order: coal < polypropylene < biochar < wood. Interestingly, lower gut fluid solubilization for polypropylene than biochar infers that gut fluid micelles may have solubilized part of the biochar matrix while bioaccessibility from plastic can be limited by the solubilizing potential of gut fluids dependent on the solid to liquid ratio or renewal of fluids in the gut. Biouptake in worms was lower by 76% when PCBs were associated with polypropylene compared to sediment. The presence of microplastics in sediments had an overall impact of reducing bioavailability and transfer of HOCs to sediment-ingesting organisms. Since the vast majority of sediment and suspended particles in the environment are natural organic and inorganic materials, pollutant transfer through particle ingestion will be dominated by these particles and not microplastics. Therefore, these results support the conclusion that in most cases the transfer of organic pollutants to aquatic organisms from microplastic in the diet is likely a small contribution compared to other natural pathways of exposure.

B. Beckingham, U. Ghosh, Environmental Pollution, Volume 220, Part A, January 2017, Pages 150–158

The article

Plastics and microplastics on recreational beaches in Punta del Este (Uruguay): Unseen critical residents ?

Beaches are social-ecological systems that provide several services improving human well-being. However, as one of the major coastal interfaces they are subject to plastic pollution, one of the most significant global environmental threats at present. For the first time for Uruguayan beaches, this study assessed and quantified the accumulation of plastic and microplastic debris on sandy beaches of the major touristic destination Punta del Este during the austral spring of 2013. Aiming to provide valuable information for decision-making, we performed a detailed analysis of plastic debris, their eventual transport pathways to the coast (from land and sea), and the associated persistent pollutants. The results indicated that the smallest size fractions (<20 mm) were the dominant size range, with fragments and resin pellets as types with the highest number of items. PAHs and PCBs were found in plastic debris, and their levels did not differ from baseline values reported for similar locations. The abundance of plastic debris was significantly and positively correlated with both the presence of possible land-based sources (e.g. storm-water drains, beach bars, beach access, car parking, and roads), and dissipative beach conditions. The analysis of coastal currents suggested some potential deposition areas along Punta del Este, and particularly for resin pellets, although modeling was not conclusive. From a local management point of view, the development and use of indices that allow predicting trends in the accumulation of plastic debris would be critically useful. The time dimension (e.g. seasonal) should also be considered for this threat, being crucial for locations such as Uruguay, where the use of beaches increases significantly during the summer. This first diagnosis aims to generate scientific baseline, necessary for improved management of plastic litter on beaches and their watersheds.

J.P. Lozoya, F. Teixeira de Mello, D. Carrizo and al., Environmental Pollution, Volume 218, November 2016, Pages 931–941

The article

Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: A case study of polypropylene

Though plastics show good chemical inertness, they could sorb polychlorinated biphenyls (PCBs) and other toxic pollutants from the surrounding environment. Thus, ingestion of microplastics by marine organisms potentially enhances the transport and bioavailability of toxic chemicals. However, there is lack of studies on the sorption capacity, mechanism and factors affecting the sorption behavior. Here, sorption of PCBs by microplastics in the simulated seawater was studied using the batch oscillation equilibration technique, in which polypropylene (PP) and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) acted as model plastic and PCB, respectively. Factors including particle size, temperature and solution environment were investigated. Results showed that, equilibrium sorption time is about 8 h and sorption capacity increase with decreasing particle size and temperature. Different sorption capacity in three solution environments was observed. Equilibrium data in three solution environments fitted very well to the Langmuir sorption model, indicating chemical sorption is the predominant mechanism.

Zhiwei Zhan, Jundong Wang, Jinping Peng and al., Marine Pollution Bulletin, Volume 110, Issue 1, 15 September 2016, Pages 559–563

The article