Impact of Polymer Colonization on the Fate of Organic Contaminants in Sediment

Plastic pellets and microbes are important constitutes in sediment, but the significance of microbes colonizing on plastic pellets to the environmental fate and transport of organic contaminants has not been adequately recognized and assessed. To address this issue, low-density polyethylene (LDPE), polyoxymethylene (POM) and polypropylene (PP) slices were preloaded with dichlorodiphenyltrichloroethanes (DDTs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and incubated in abiotic and biotic sediment microcosms. Images from scanning electron microscope, Lysogeny Broth agar plates and confocal laser scanning microscope indicated that all polymer slices incubated in biotic sediments were colonized by microorganisms, particularly the LDPE slices. The occurrence of biofilms induced higher dissipation rates of DDTs and PAHs from the LDPE slice surfaces incubated in the biotic sediments than in the abiotic sediments. Plastic colonization on LDPE slice surfaces enhanced the biotransformation of DDT and some PAHs in both marine and river sediments, but had little impact on PCBs. By comparison, PP and POM with unique properties were shown to exert different impacts on the physical and microbial activities as compared to LDPE. These results clearly demonstrated that the significance of polymer surface affiliated microbes to the environmental fate and behavior of organic contaminants should be recognized.

Chen-Chou Wu, Lian-Jun Bao, Liang-Ying Liu, Lei Shi, Shu Tao, and Eddy Y. Zeng, Environ. Sci. Technol., Just Accepted Manuscript, August 21, 2017

The article

Advertisements

Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets

This study assessed the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets, collected from sandy beaches and considered different resin and colour tones. Results showed that polyethylene pellets, while displaying a greater range of total PAH concentrations did not differ significantly from polypropylene pellets. More importantly, both resin types demonstrated predictable increases in total PAH across a spectrum of darkening colour tones. Multivariate comparisons of 36 PAH groups, further showed considerable variability across resin type and colour, with lighter coloured pellets comprising lower molecular weight, while darker pellets contained higher weight PAHs. Overall, we show predictable variation in PAH concentrations and compositions of plastic pellets of different ages and resin types that will directly influence the potential for toxicological effects. Our findings suggest that monitoring programs should take these attributes into account when assessing the environmental risks of microplastic contamination of marine and coastal habitats.

Mara Fisner, Alessandra Majer, Satie Taniguchi, Márcia Bícego, Alexander Turra, Daniel Gorman, Marine Pollution Bulletin, Available online 3 July 2017, In Press

The article

Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater

Probabilistic environmental quality criteria for Naphthalene (Nap), Phenanthrene (Phe), Fluoranthene (Flu), Pyrene (Pyr), Triclosan (TCS), Tributyltin (TBT), Chlorpyrifos (CPY), Diuron (DUR), γ-Hexaclorocyclohexane (γ-HCH), Bisphenol A (BPA) and 4-Nonylphenol (4-NP) were derived from acute toxicity data using saltwater species representative of marine ecosystems, including algae, mollusks, crustaceans, echinoderms and chordates. Preferably, data concerns sublethal endpoints and early life stages from bioassays conducted in our laboratory, but the data set was completed with a broad literature survey. The Water Quality Criteria (WQC) obtained for TBT (7.1·10−3 μg L−1) and CPY (6.6· 10−3 μg L−1) were orders of magnitude lower than those obtained for PAHs (ranging from 3.75 to 45.2 μg L−1), BPA (27.7 μg L−1), TCS (8.66 μg L−1) and 4-NP (1.52 μg L−1). Critical values for DUR and HCH were 0.1 and 0.057 μg L−1 respectively. Within this context, non-selective toxicants could be quantitatively defined as those showing a maximum variability in toxicity thresholds (TT) of 3 orders of magnitude across the whole range of marine diversity, and a cumulative distribution of the TT fitting to a single log-logistic curve, while for selective toxicants variability was consistently found to span 5 orders of magnitude and the TT distribution showed a bimodal pattern. For the latter, protective WQC must be derived taking into account the SSD of the sensitive taxa only.

I. Durán, R. Beiras, Environmental Pollution, Volume 224, May 2017, Pages 384–391

The article

Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the “net flow” of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

Hwang Lee, Sein Chang, Seung-Kyu Kim, Jung-Hwan Kwon, Ocean Science Journal, March 2017, Volume 52, Issue 1, pp 43–55

The article

Pollutant content in marine debris and characterization by thermal decomposition

Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400–500 K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800 K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET).

M.E. Iñiguez, J.A. Conesa, A. Fullana, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 359–365

The article

Distribution, potential sources and ecological risks of two persistent organic pollutants in the intertidal sediment at the Shuangtaizi Estuary, Bohai Sea of China

Spatial distribution, source apportionment, and potential ecological risks of sixteen polycyclic aromatic hydrocarbons (PAHs) and seven endocrine disrupting compounds (EDCs) in the intertidal sediment at the Shuangtaizi Estuary, Bohai Sea of China were analyzed. Results showed that the total PAH concentrations ranged from 28.79 ng g− 1 dw to 281.97 ng g− 1 dw (mean: 115.92 ng g− 1 dw) and the total EDC concentrations from 0.52 ng g− 1 dw to 126.73 ng g− 1 dw (mean: 37.49 ng g− 1 dw). The distribution pattern for the PAHs was generally different from that of the EDCs possibly due to their distinct sources and n-octanol-/water partition coefficients (KOW). Qualitative and quantitative analytical results showed that PAH sources were mainly from a mixture of pyrogenic and petrogenic contributions. The higher levels at the southeast of Geligang indicated that the EDC pollutants may have mainly originated from the plastic industry and other chemical plants located along the Liao River. Ecological risk assessment revealed that PAHs exhibited low ecotoxicological effects, whereas EDCs, especially 4-tert-octylphenol and bisphenol A, had high ecological hazard to the estuarine biota.

Xiutang Yuan, Xiaolong Yang, Anguo Zhang, Xindong Ma, Hui Gao, Guangshui Na, Humin Zong, Guize Liu, Yongguang Sun, Marine Pollution Bulletin, Volume 114, Issue 1, 15 January 2017, Pages 419–427

The article

Contaminated Aquatic Sediments

A review of the literature published in 2015 relating to the assessment, evaluation and remediation of contaminated aquatic sediments is presented. The review is divided into the following main sections: policy and guidance, methodology, distribution, fate and transport, risk, toxicity and remediation.

Jaglal, Kendrick, Water Environment Research, 2016 Literature Review, pp. 1564-1594 (31)

The article