Microplastics in the environment: Challenges in analytical chemistry – A review

Microplastics can be present in the environment as manufactured microplastics (known as primary microplastics) or resulting from the continuous weathering of plastic litter, which yields progressively smaller plastic fragments (known as secondary microplastics). Herein, we discuss the numerous issues associated with the analysis of microplastics, and to a less extent of nanoplastics, in environmental samples (water, sediments, and biological tissues), from their sampling and sample handling to their identification and quantification. The analytical quality control and quality assurance associated with the validation of analytical methods and use of reference materials for the quantification of microplastics are also discussed, as well as the current challenges within this field of research and possible routes to overcome such limitations.

Ana B. Silva, Ana S. Bastos, Celine I.L. Justino and al., Analytica Chimica Acta, Available online 20 February 2018, In Press

The article


Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations

We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies).

Manuel Correia, Katrin Loeschner, Analytical and Bioanalytical Chemistry, pp 1–13,

The article

Analytical methodologies for monitoring micro(nano)plastics: Which are fit for purpose?

Since 2004, when microplastics appears in literature, thousands of researchers focussed on this topic and analysed microplastics in almost every environmental compartment. However, there is still a lack of standardisation, and therefore, used methodologies varied widely. Most researchers performed controversially discussed visual examination, but it became more and more a supporting tool to reduce measuring effort. To that account, especially infrared or Raman microscopy were used for chemical characterisation. This indicates that dimensions of analysed microplastics changed to micrometre scaling. However, those microscopy technologies were used for particle by particle characterisation, and therefore, it is still challenging to handle the mass of data. Alternatively, thermal extraction and desorption gas chromatography is a useful integrating analysis approach, which allows a multicomponent characterisation of environmental samples without any complex sample preparation.

Gerrit Renner, Torsten C. Schmidt, Jürgen Schram, Current Opinion in Environmental Science & Health, Volume 1, February 2018, Pages 55–61

The article

Polystyrene Nanoplastics-enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain

Nanoplastics (NPs) are becoming an emerging pollutant of global concern. A potential risk is that NPs may serve as carriers to increase the spreading of co-existing contaminants. In this study, we examined the effects of polystyrene nanoplastics (PSNPs, 100 nm), used as a model NP, on the transport of five organic contaminants of different polarity in saturated soil. The presence of low concentrations of PSNPs significantly enhanced the transport of nonpolar (pyrene) and weakly polar (2,2′,4,4′-tetrabromodiphenyl ether) compounds, but had essentially no effects on the transport of three polar compounds (bisphenol A, bisphenol F and 4-nonylphenol). The strikingly different effects of NPs on the transport of nonpolar/weakly polar versus polar contaminants could not be explained with different adsorption affinities, but was consistent with the polarity-dependent extents of desorption hysteresis. Notably, desorption hysteresis was only observed for nonpolar/weakly polar contaminants, likely because nonpolar compounds tended to adsorb in the inner matrices of glassy polymeric structure of polystyrene (resulting in physical entrapment of adsorbates), whereas polar compounds favored surface adsorption. This hypothesis was verified with supplemental adsorption and desorption experiments of pyrene and 4-nonylphenol using a dense, glassy polystyrene polymer and a flexible, rubbery polyethylene polymer. Overall, the findings of this study underscore the potentially significant environmental implication of NPs as contaminant carriers.

Jin Liu, Yini Ma, Dongqiang Zhu, Tianjiao Xia, Yu Qi, Yao Yao, Xiaoran Guo, Rong Ji, and Wei Chen, Environ. Sci. Technol., Just Accepted Manuscript, February 8, 2018

Microplastics and nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport

Plastic litter is widely acknowledged as a global environmental threat and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant co-transport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.

Olubukola Alimi, Jeffrey Farner Budarz, Laura M Hernandez, and Nathalie Tufenkji, Environ. Sci. Technol., 2018, 52 (4), pp 1704–1724

Nanoplastic in the North Atlantic Subtropical Gyre

Plastics can be found in all ecosystems across the globe. This type of environmental pollution is important, even if its impact is not fully understood. The presence of small plastic particles at the micro- and nanoscales is of growing concern, but nanoplastic has not yet been observed in natural samples. In this study, we examined four size fractions (meso-, large micro-, small micro-, and nanoplastics) of debris collected in the North Atlantic subtropical gyre. To obtain the nanoplastic portion, we isolated the colloidal fraction of seawater. After ultrafiltration, the occurrence of nanoscale particles was demonstrated using dynamic light scattering experiments. The chemical fingerprint of the colloids was obtained by pyrolysis coupled with gas chromatography–mass spectrometry. We demonstrated that the signal was anthropogenic and attributed to a combination of plastics. The polymer composition varied among the size classes. At the micro- and nanoscales, polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene were observed. We also observed changes in the pyrolytic signals of polyethylene with decreasing debris size, which could be related to the structural modification of this plastic as a consequence of weathering.

Alexandra Ter Halle, Laurent Jeanneau, Marion Martignac, Emilie Jardé, Boris Pedrono, Laurent Brach and Julien Gigault, Environ. Sci. Technol., 51 (23), pp 13689–13697, 2017

Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief

Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons.

Albert A. Koelmans, Ellen Besseling, Edwin Foekema and al., Environ. Sci. Technol., Volume 51, Issue 20, Page 11513-11519, October 17, 2017

The article