Constraints and Priorities for Conducting Experimental Exposures of Marine Organisms to Microplastics

Marine plastic pollution is a major environmental issue. Given their ubiquitous nature and small dimensions, ingestion of microplastic (MP) and nanoplastic (NP) particles and their subsequent impact on marine life are a growing concern worldwide. Transfers along the trophic chain, including possible translocation, for which the hazards are less understood, are also a major preoccupation. Effects of MP ingestion have been studied on animals through laboratory exposure, showing impacts on feeding activity, reserve depletion and inflammatory responses, with consequences for fitness, notably reproduction. However, most experimental studies have used doses of manufactured virgin microspheres that may not be environmentally realistic. As for most ecotoxicological issues, the environmental relevance of laboratory exposure experiments has recently been debated. Here we review constraints and priorities for conducting experimental exposures of marine wildlife to microplastics based on the literature, feedback from peer reviewers and knowledge gained from our experience. Priorities are suggested taking into account the complexity of microplastics in terms of (i) aggregation status, surface properties and interactions with organic and inorganic materials, (ii) diversity of encountered particles types and concentrations, (iii) particle bioavailability and distribution in experimental tanks to achieve reproducibility and repeatability in estimating effects, and (iv) strict experimental procedures to verify the existence of genuine translocation. Relevant integrative approaches encompass a wide spectrum of methods from -omics to ecophysiological approaches, including modeling, are discussed to provide novel insights on the impacts of MP/NP on marine ecosystems from a long-term perspective. Knowledge obtained in this way would inform stakeholders in such a way as to help them mitigate impacts of the micro- and nano-plastic legacy.

Ika Paul-Pont, Kevin Tallec, Carmen Gonzalez-Fernandez and al., Front. Mar. Sci., 18 July 2018

The article


Relevance of nano- and microplastics for freshwater ecosystems: A critical review

The current paper critically reviews the state-of-the-science on (1) microplastics (MP) types and particle concentrations in freshwater ecosystems, (2) MP and nanoplastics (NP) uptake and tissue translocation, (3) MP/NP-induced effects in freshwater organisms, and (4) capabilities of MP/NP to modulate the toxicity of environmental chemicals. The reviewed literature as well as new data on MP and NP concentrations in the river Elbe and on particle uptake into human cells indicate an environmental relevance of small particles in the low nano- and micrometer range higher than that of larger MP.

Rita Triebskorn, Thomas Braunbeck, Tamara Grummt and al., TrAC Trends in Analytical Chemistry, Volume 110, January 2019, Pages 375-392

The article

Emergence of nanoplastic in the environment and possible impact on human health

On account of environmental concerns, the fate and adverse effects of plastics have attracted considerable interest in the last years. Recent studies have indicated the potential for fragmentation of plastic materials into nanoparticles, i.e., “nanoplastics” and their possible accumulation in the environment. Nanoparticles can show markedly different chemical and physical properties than their bulk material form. Therefore, possible risks and hazards to the environment need to be considered and addressed. However, the fate and effect of nanoplastics in the (aquatic) environment has so far been little explored. In this review, we aim to provide an overview of the literature on this emerging topic, with an emphasis on the reported impacts of nanoplastics on human health, including the challenges involved in detecting plastics in a biological environment. We first discuss the possible sources of nanoplastics, their fates and effects in the environment and then describe the possible entry routes of these particles into the human body, as well as their uptake mechanisms at the cellular level. Since the potential risks of environmental nanoplastics to humans have not yet been extensively studied, we focus on studies demonstrating cell responses induced by polystyrene nanoparticles. In particular, the influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.

Roman Lehner, Christoph Weder, Alke Petri-Fink, and Barbara Rothen-Rutishauser, Environ. Sci. Technol., Just Accepted Manuscript, January 10, 2019

Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax

The present study aimed to evaluate the effects of ~45 nm nanoplastics (NPs) on the marine fish Dicentrarchus labrax after a short-term exposure. Animals were exposed to a concentration range of NPs for 96 h and liver, plasma and skin mucus were sampled. Assessed endpoints included biochemical biomarkers and expression of genes related to lipid metabolism, immune system and general cell stress. Abundance of mRNA transcripts related to lipid metabolism, pparα and pparγ, were significantly increased after exposure to NPs. Biochemical endpoints revealed decreased esterase activity levels in plasma, suggesting that the immune system of fish might be compromised by exposure to NPs. Moreover, significantly lower levels of alkaline phosphatase were found in the skin mucus of animals exposed to NPs. The present results suggest that NPs may represent a hazard to this marine fish, potentially interfering with the metabolism of lipids and the correct function of the immune response.

I. Brandts, M. Teles, A. Tvarijonaviciute and al., Genomics, Volume 110, Issue 6, November 2018, Pages 435-441

The article

Instrumental analysis of microplastics-benefits and challenges

There is a high demand for easy, cheap, comparable, and robust methods for microplastic (MP) analysis, due to the ever-increasing public and scientific interest in (micro-) plastic pollution in the environment. Today, a multitude of methodologies for sampling, sample preparation, and analysis of MPs are in use. This feature article deals with the most prominent detection methods as well as with sampling strategies and sample preparation techniques. Special emphasis is on their benefits and challenges. Thus, spectroscopic methods, coupled with microscopy, require time-consuming sample preparation and extended measurement times, whereas thermo-analytical methods are faster but lack the ability to determine the size distribution in samples. To that effect, most of the described methods are applicable depending on the defined analytical question.

Sven Huppertsberg, Thomas P. Knepper, Analytical and Bioanalytical Chemistry, , Volume 410, Issue 25, pp 6343–6352

The article

Influence of Nano- and Microplastic Particles on the Transport and Deposition Behaviors of Bacteria in Quartz Sand

Plastic particles are world widely present in natural environment and are highly likely to interact with bacteria (the ubiquitous microbes in natural environment), which might affect the transport and deposition of bacteria in porous media. In this study, the significance of plastic particles from nano-scale to micron-scale (0.02-2 μm) on the transport and deposition behaviors of bacteria (Escherichia coli) in quartz sand was examined under environmentally relevant conditions in both NaCl and CaCl2 solutions at pH 6. The results showed that the presence of different-sized plastic particles did not affect bacterial transport behaviors at low ionic strength (10 mM NaCl and 1 mM CaCl2), whereas, at high ionic strength conditions (50 mM NaCl and 5 mM in CaCl2), plastic particles increased bacterial transport in quartz sand. At low ionic strength conditions, the mobility of both plastic particles and bacteria was high, which might drive to the negligible effects of plastic particles on bacterial transport behaviors. The mechanisms driving to the enhanced cell transport at high ionic strength were different for different-sized plastic particles. Specifically, for 0.02 μm nano-plastic particles, the adsorption of plastic particles onto cell surfaces and the repel effect induced by suspended plastic particles contributed to the increased cell transport. As for 0.2 μm MPs, the suspended plastic particles that induced repelling effect contributed to the increased cell transport. Whereas, for 2 μm MPs, the competition deposition sites by the plastic particles was the contributor to the increased cell transport.

HE LEI, Dan Wu, Haifeng Rong, Meng Li, Meiping Tong, and Hyunjung Kim, Environ. Sci. Technol., Just Accepted Manuscript, September 11, 2018

Nanoplastic Ingestion Enhances Toxicity of Persistent Organic Pollutants (POPs) in the Monogonont Rotifer Brachionus koreanus via Multixenobiotic Resistance (MXR) Disruption

Among the various materials found inside microplastic pollution, nanosized microplastics are of particular concern due to difficulties in quantification and detection; moreover, they are predicted to be abundant in aquatic environments with stronger toxicity than microsized microplastics. Here, we demonstrated a stronger accumulation of nanosized microbeads in the marine rotifer Brachionus koreanus compared to microsized ones, which was associated with oxidative stress-induced damages on lipid membranes. In addition, multixenobiotic resistance conferred by P-glycoproteins and multidrug resistance proteins, as a first line of membrane defense, was inhibited by nanoplastic pre-exposure, leading to enhanced toxicity of 2,2′,4,4′-tetrabromodiphenyl ether and triclosan in B. koreanus. Our study provides a molecular mechanistic insight into the toxicity of nanosized microplastics toward aquatic invertebrates and further implies the significance of synergetic effects of microplastics with other environmental persistent organic pollutants.

Chang-Bum Jeong, Hye-Min Kang, Young Hwan Lee and al., Environ. Sci. Technol., Article ASAP, September 7, 2018

The article