Ingestion of micro- and nanoplastics in Daphnia magna – Quantification of body burdens and assessment of feeding rates and reproduction

Evidence is increasing that micro- and nanoplastic particles can have adverse effects on aquatic organisms. Exposure studies have so far mainly been qualitative since quantitative measurements of particle ingestion are analytically challenging. The aim of this study was therefore to use a quantitative approach for determining ingestion and egestion of micro- and nanoplastics in Daphnia magna and to analyze the influence of particle size, exposure duration and the presence of food. One week old animals were exposed to 2 μm and 100 nm fluorescent polystyrene beads (1 mg/l) for 24 h, followed by a 24 h egestion period in clean medium. During both phases body burdens of particles were determined by measuring the fluorescence intensity in dissolved tissues. Ingestion and egestion were investigated in the absence and presence of food (6.7·105 cells of Raphidocelis subcapitata per ml). Furthermore, feeding rates of daphnids in response to particle exposure were measured as well as effects on reproduction during a 21 days exposure (at 1 mg/l, 0.5 mg/l and 0.1 mg/l) to investigate potential impairments of physiology. Both particle sizes were readily ingested, but the ingested mass of particles was five times higher for the 2 μm particles than for the 100 nm particles. Complete egestion did not occur within 24 h but generally higher amounts of the 2 μm particles were egested. Animal body burdens of particles were strongly reduced in the presence of food. Daphnid feeding rates decreased by 21% in the presence of 100 nm particles, but no effect on reproduction was found despite high body burdens of particles at the end of 21 days exposure. The lower egestion and decreased feeding rates, caused by the 100 nm particles, could indicate that particles in the nanometer size range are potentially more hazardous to D. magna compared to larger particle sizes.

Sinja Rist, Anders Baun, Nanna B. Hartmann, Environmental Pollution, Volume 228, September 2017, Pages 398–407

Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana

Plastic pollution has been globally recognized as a critical issue for marine ecosystems and nanoplastics constitute one of the last unexplored areas to understand the magnitude of this threat. However, current difficulties in sampling and identifying nano-sized debris make hard to assess their occurrence in marine environment. Polystyrene nanoparticles (PS NPs) are largely used as nanoplastics in ecotoxicological studies and although acute exposures have been already investigated, long-term toxicity on marine organisms is unknown. Our study aims at evaluating the effects of 40 nm PS anionic carboxylated (PS-COOH) and 50 nm cationic amino-modified (PS-NH2) NPs in two planktonic species, the green microalga Dunaliella tertiolecta and the brine shrimp Artemia franciscana, respectively prey and predator. PS NP behaviour in exposure media was determined through DLS, while their toxicity to microalgae and brine shrimps evaluated through 72 h growth inhibition test and 14 d long-term toxicity test respectively. Moreover, the expression of target genes (i.e. clap and cstb), having a role in brine shrimp larval growth and molting, was measured in 48 h brine shrimp larvae. A different behaviour of the two PS NPs in exposure media as well as diverse toxicity to the two planktonic species was observed. PS-COOH formed micro-scale aggregates (Z-Average > 1 μm) and did not affect the growth of microalgae up to 50 μg/ml or that of brine shrimps up to 10 μg/ml. However, these negatively charged NPs were adsorbed on microalgae and accumulated (and excreted) in brine shrimps, suggesting a potential trophic transfer from prey to predator. On the opposite, PS-NH2-formed nano-scale aggregates (Z-Average < 200 nm), caused inhibition of algal growth (EC50 = 12.97 μg/ml) and mortality in brine shrimps at 14 d (LC50 = 0.83 μg/ml). Moreover, 1 μg/ml PS-NH2 significantly induced clap and cstb genes, explaining the physiological alterations (e.g. increase in molting) previously observed in 48 h larvae, but also suggesting an apoptotic pathway triggered by cathepsin L-like protease in brine shrimps upon PS-NH2 exposure. These findings provide a first insight into long-term toxicity of nanoplastics to marine plankton, underlining the role of the surface chemistry in determining the behaviour and effects of PS NPs, in terms of adsorption, growth inhibition, accumulation, gene modulation and mortality. The use of long-term end-point has been identified as valuable tool for assessing the impact of nanoplastics on marine planktonic species, being more predictable of real exposure scenarios for risk assessment purposes.

E. Bergami, S. Pugnalini, M.L. Vannuccini, L. Manfra, C. Faleri, F. Savorelli, K.A. Dawson, I. Corsi, Aquatic Toxicology, Aquatic Toxicology, Volume 189, August 2017, Pages 159–169

The article

Are There Nanoplastics in Your Personal Care Products?

Fragmentation of plastic debris and the commercial use of plastic microbeads have led to the widespread distribution of microplastics in natural environments. Several studies have reported on the occurrence and toxicity of microplastics in soils and waters; however, due to methodological challenges, the presence and impact of nanoplastics (<100 nm) in natural systems have been largely ignored. Microbeads used in consumer products such as scrubs and shampoos are processed by mechanical means that may lead to their fragmentation into potentially more hazardous nanoplastics. In this study, three commercial facial scrubs containing polyethylene microbeads (~0.2 mm diameter) were examined to verify whether they contained nanoplastics. Particulates in the scrubs were fractionated using sequential filtration to isolate particles smaller than 100 nm. Scanning electron microscopy was used to confirm the presence of nanoparticles ranging in size from 24 ± 6 nm to 52 ± 14 nm. X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy were used to confirm that the identified nanoparticles consisted of polyethylene. This study confirms the (unexpected) presence of nanoplastics in personal care products containing polyethylene microbeads and highlights the need for further studies to characterize the release and distribution of nanoplastic litter in natural aquatic and soil environments.

Laura M. Hernandez, Nariman Yousefi, and Nathalie Tufenkji, Environ. Sci. Technol. Lett., 2017, 4 (7), pp 280–285

Micro- and Nanoplastic Pollution of Freshwater and Wastewater Treatment Systems

Plastic waste is a widespread and persistent global challenge with negative impacts on the environment, economy, human health and aesthetics. Plastic pollution has been a focus of environmental research over the past few decades, particularly in relation to macroplastics that are easily visible by the naked eye. More recently, smaller plastic waste at the micro- and nanoscale has become of increasing concern, resulting in extensive investment in research to advance knowledge on the sources, distribution, fate and impact of these materials in aquatic systems. However, owing to their small sizes and a lack of unified methods, adequate quantitative and qualitative assessment has been difficult. Furthermore, most of the microplastic surveys available to date have focussed in the marine environment while scarce knowledge exists of freshwater systems. Because the majority of marine debris originates on land, the role of wastewater treatment systems and natural fluvial vectors in delivering these emerging contaminants to the environment should be explored. Considering fundamental aspects pertaining to microplastic sources, distribution, mobility and degradation in these systems is crucial for developing effective control measures and strategies to mitigate the discharge of these particles to the sea.

Reina M. Blair, Susan Waldron, Vernon Phoenix, Caroline Gauchotte-Lindsay, Environmental Science and Pollution Research, 07 June 2017, pp 1–7

The article

Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity

This study investigated the direct and indirect toxic effects of microplastics and nanoplastics toward zebrafish (Danio rerio) larvae locomotor activity. Results showed that microplastics alone exhibited no significant effects except for the upregulated zfrho visual gene expression; whereas nanoplastics inhibited the larval locomotion by 22% during the last darkness period, and significantly reduced larvae body length by 6%, inhibited the acetylcholinesterase activity by 40%, and upregulated gfap, α1-tubulin, zfrho and zfblue gene expression significantly. When co-exposed with 2 μg/L 17 α-ethynylestradiol (EE2), microplastics led to alleviation on EE2’s inhibition effect on locomotion, which was probably due to the decreased freely dissolved EE2 concentration. However, though nanoplastics showed stronger adsorption ability for EE2, the hypoactivity phenomenon still existed in the nanoplastics co-exposure group. Moreover, when co-exposed with a higher concentration of EE2 (20 μg/L), both plastics showed an enhanced effect on the hypoactivity. Principal component analysis was performed to reduce data dimensions and four principal components were reconstituted in terms of oxidative stress, body length, nervous and visual system related genes explaining 84% of total variance. Furthermore, oxidative damage and body length reduction were evaluated to be main reasons for the hypoactivity. Therefore, nanoplastics alone suppressed zebrafish larvae locomotor activity and both plastic particles can change the larvae swimming behavior when co-exposed with EE2. This study provides new insights into plastic particles’ effects on zebrafish larvae, improving the understanding of their environmental risks to the aquatic environment.

Qiqing Chen, Michael Gundlach, Shouye Yang and al., Science of The Total Environment, Volumes 584–585, 15 April 2017, Pages 1022–1031

The article

Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the Bay of Brest (Brittany, France)

The concentration and spatial distribution of microplastics in the Bay of Brest (Brittany, France) was investigated in two surveys. Surface water and sediment were sampled at nine locations in areas characterized by contrasting anthropic pressures, riverine influences or water mixing. Microplastics were categorized by their polymer type and size class. Microplastic contamination in surface water and sediment was dominated by polyethylene fragments (PE, 53–67%) followed by polypropylene (PP, 16–30%) and polystyrene (PS, 16–17%) microparticles. The presence of buoyant microplastics (PE, PP and PS) in sediment suggests the existence of physical and/or biological processes leading to vertical transfer of lightweight microplastics in the bay. In sediment (upper 5 cm), the percentage of particles identified by Raman micro-spectroscopy was lower (41%) than in surface water (79%) and may explain the apparent low concentration observed in this matrix (0.97 ± 2.08 MP kg−1 dry sediment). Mean microplastic concentration was 0.24 ± 0.35 MP m−3 in surface water. We suggest that the observed spatial MP distribution is related to proximity to urbanized areas and to hydrodynamics in the bay. A particle dispersal model was used to study the influence of hydrodynamics on surface microplastic distribution. The outputs of the model showed the presence of a transitional convergence zone in the centre of the bay during flood tide, where floating debris coming from the northern and southern parts of the bay tends to accumulate before being expelled from the bay. Further modelling work and observations integrating (i) the complex vertical motion of microplastics, and (ii) their point sources is required to better understand the fate of microplastics in such a complex coastal ecosystem.

L. Frère, I. Paul-Pont, E. Rinnert, S. Petton, J. Jaffré, I. Bihannic, P. Soudant, C. Lambert, A. Huvet, Environmental Pollution, Volume 225, June 2017, Pages 211–222

The article

The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms

In studies of plastic ingestion by marine wildlife, visual separation of plastic particles from gastrointestinal tracts or their dietary content can be challenging. Earlier studies have used solutions to dissolve organic materials leaving synthetic particles unaffected. However, insufficient tests have been conducted to ensure that different categories of consumer products partly degraded in the environment and/or in gastrointestinal tracts were not affected. In this study 63 synthetic materials and 11 other dietary items and non-plastic marine debris were tested. Irrespective of shape or preceding environmental history, most polymers resisted potassium hydroxide (KOH) solution, with the exceptions of cellulose acetate from cigarette filters, some biodegradable plastics and a single polyethylene sheet. Exposure of hard diet components and other marine debris showed variable results. In conclusion, the results confirm that usage of KOH solutions can be a useful approach in general quantitative studies of plastic ingestion by marine wildlife.

Susanne Kühn, Bernike van Werven, Albert van Oyen, André Meijboom, Elisa L. Bravo Rebolledo, Jan A. van Franeker, Marine Pollution Bulletin, Volume 115, Issues 1–2, 15 February 2017, Pages 86–90

The article