Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?

Monitoring the presence of microplastics (MP) in marine organisms is currently of high importance. This paper presents the qualitative and quantitative MP contamination of two bivalves from the French Atlantic coasts: the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas). Three factors potentially influencing the contamination were investigated by collecting at different sampling sites and different seasons, organisms both wild and cultivated. Inter- and intra-species comparisons were also achieved. MP quantity in organisms was evaluated at 0.61 ± 0.56 and 2.1 ± 1.7 MP per individual respectively for mussels and oysters. Eight different polymers were identified. Most of the MPs were fragments; about a half of MPs were grey colored and a half with a size ranging from 50 to 100 μm for both studied species. Some inter-specific differences were found but no evidence for sampling site, season or mode of life effect was highlighted.

Nam Ngoc Phuong, Laurence Poirier, Quoc Tuan Pham, Fabienne Lagarde, atlAurore Zalouk-Vergnoux, Marine Pollution Bulletin, Available online 26 October 2017, In Press

The article

Advertisements

A simple method to quantify PC and PET microplastics in the environmental samples by LC-MS/MS

Occurrence of microplastics (MPs) in the environments have been frequently reported. However, studies on the quantification methods for MPs are still needed. Plastics are polymers of different degrees of polymerization. In this study, alkali assisted thermal hydrolysis was applied to depolymerize two plastics containing ester groups, polycarbonate (PC) and polyethylene terephthalate (PET), in pentanol or butanol system. By determining the concentrations of the depolymerized building block compounds, i.e. bisphenol A (BPA) and para-phthalic acid (PTA), the amounts of PC and PET MPs in the environmental samples were quantified. Recoveries of 87.2-97.1% were obtained for the PC and PET plastics particles spiked in the landfill sludge. The method was successfully applied to determine the occurrence of PC and PET MPs in the samples of sludge, marine sediments, indoor dust, digestive residues in mussel and clam, as well as in sea salt and rock salt. High concentrations of 246 and 430 mg/kg were determined for PC and PET type MP in an indoor dust, respectively. In addition, 63.7 mg/kg of PC and 127 mg/kg of PET were detected in the digestive residues of a clam.

Lei Wang, Junjie Zhang, Shaogang Hou, and Hongwen Sun, Environ. Sci. Technol. Lett., Just Accepted Manuscript, November 2, 2017

Dechlorane Plus induces oxidative stress and decreases cyclooxygenase activity in the blue mussel

Dechlorane Plus (DP) is a chlorinated flame retardant used mainly in electrical wire and cable coating, computer connectors, and plastic roofing materials. Concentrations of DP (syn and anti isomers) are increasingly being reported in aquatic ecosystems worldwide. However, there is exceedingly little information on the exposure-related toxicity of DP in aquatic organisms, especially in bivalves. The objective of this study was to investigate the in vivo and in vitro effects of DP exposure on histopathology, lipid peroxidation (LPO) levels, cyclooxygenase (COX) activity, phagocytosis capacity and efficiency, and DNA strand breakage in the blue mussel (Mytilus edulis) following a 29 days exposure (0.001, 0.01, 0.1 and 1.0 μg DP/L). Blue mussels accumulated DP in muscle and digestive gland in a dose-dependent manner. LPO levels in gills were found to increase by 82% and 67% at the 0.01 and 1.0 μg DP/L doses, respectively, while COX activity in gills decreased by 44% at the 1 μg/L dose. No histopathological lesion was found in gonads following DP exposure. Moreover, no change in hemocyte DNA strand breakage, phagocytosis rate, and viability was observed following DP exposure. Present study showed that toxicity of DP may occur primarily via oxidative stress in the blue mussel and potentially other bivalves, and that gills represent the most responsive tissue to this exposure.

Pierre-Luc Gagné, Marlène Fortier, Marc Fraser and al., Aquatic Toxicology, Volume 188, July 2017, Pages 26-32

The article

Fate and stability of polyamide-associated bacterial assemblages after their passage through the digestive tract of the blue mussel Mytilus edulis

We examined whether bacterial assemblages inhabiting the synthetic polymer polyamide are selectively modified during their passage through the gut of Mytilus edulis in comparison to the biopolymer chitin with focus on potential pathogens. Specifically, we asked whether bacterial biofilms remained stable over a prolonged period of time and whether polyamide could thus serve as a vector for potential pathogenic bacteria. Bacterial diversity and identity were analysed by 16S rRNA gene fingerprints and sequencing of abundant bands. The experiments revealed that egested particles were rapidly colonised by bacteria from the environment, but the taxonomic composition of the biofilms on polyamide and chitin did not differ. No potential pathogens could be detected exclusively on polyamide. However, after 7 days of incubation of the biofilms in seawater, the species richness of the polyamide assemblage was lower than that of the chitin assemblage, with yet unknown impacts on the functioning of the biofilm community.

Katharina Kesy, Alexander Hentzsch, Franziska Klaeger, Sonja Oberbeckmann, Stephanie Mothes, & Matthias Labrenz, Marine Pollution Bulletin, Available online 12 August 2017, In Press, Corrected Proof

The article

Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion

Microplastic pollution is recognized as an emerging threat to aquatic ecosystems. One of the main environmental risks associated with microplastics is their bioavailability to marine organisms. Up to date, ingestion has been widely accepted as the sole way for the animals to uptake microplastics. Nevertheless, microplastics have also been found in some organs which are not involved in the process of ingestion. We hypothesize that the animal might uptake microplastics through adherence in addition to ingestion. To test this hypothesis, we collected mussels from the fishery farms, conducted exposure/clearance experiments and analyzed the accumulation of microplastics in specific organ of mussels. Our studies clearly showed the uptake of microplastic in multiple organs of mussels. In the field investigations, we found that the abundance of microplastic by weight but not by individual showed significant difference among organs, and the intestine contained the highest level of microplastics (9.2 items/g). In the uptake and clearance experiment, the accumulation and retention of microfibers could also be observed in all tested organs of mussels including foot and mantle. Our results strongly suggest that adherence rather than ingestion led to the accumulation of microplastics in those organs which are not involved in ingestion process. To our best knowledge, it is the first time to propose that adherence is a novel way for animals to uptake microplastics beyond ingestion. This new finding makes us rethink about the bioavailability, accumulation and toxicity of microplastics to aquatic animals.

Prabhu Kolandhasamy, Lei Su, Jiana Li, Xiaoyun Qu, Khalida Jabeen, Huahong Shi, Science of The Total Environment, Volumes 610–611, 1 January 2018, Pages 635-640

The article

Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review

The blue mussel (Mytilus spp.) is widely used as a bioindicator for monitoring of coastal water pollution (mussel watch programs). Herein we provide a review of this study field with emphasis on: the suitability of Mytilus spp. as environmental sentinels; uptake and bioaccumulation patterns of key pollutant classes; the use of Mytilus spp. in mussel watch programs; recent trends in Norwegian mussel monitoring; environmental quality standards and background concentrations of key contaminants; pollutant effect biomarkers; confounding factors; particulate contaminants (microplastics, engineered nanomaterials); climate change; harmonization of monitoring procedures; and the use of deployed mussels (transplant caging) in pollution monitoring. Lastly, the overall state of the art of blue mussel pollution monitoring is discussed and some important issues for future research and development are highlighted.

J. Beyer, N. W. Green, S. Brooks and al., Marine Environmental Research, Volume 130, September 2017, Pages 338-365

The article

Microplastics pollution after the removal of the Costa Concordia wreck: First evidences from a biomonitoring case study

Microplastics (MPs) represent a matter of growing concern for the marine environment. Their ingestion has been documented in several species worldwide, but the impact of specific anthropogenic activities remains largely unexplored. In this study, MPs were characterized in different benthic fish sampled after 2.5 years of huge engineering operations for the parbuckling project on the Costa Concordia wreck at Giglio Island. Fish collected in proximity of the wreck showed a high ingestion of microplastics compared to both fish from a control area and values reported worldwide. Also the elevated percentage of nylon, polypropylene lines and the presence of polystyrene are quite unusual for marine organisms sampled in natural field conditions, thus supporting the possible relationship of ingested microplastics with maritime operations during wreck removal. On the other hand, the use of transplanted mussels revealed a lower frequency of ingested MPs, and did not discriminate differences between the wreck and the control area. Some variations were observed in terms of typology and size of particles between surface- and bottom-caged mussels highlighting the influence of a different distribution of MPs along the water column. In conclusion, this study demonstrated that MPs pollution in the area of Costa Concordia was more evident on benthonic environment than on seawater column, providing novel insights on the possibility of using appropriate sentinel organisms for monitoring specific anthropogenic sources of MPs pollution in the marine environment.

Carlo Giacomo Avio, Lara Roberta Cardelli, Stefania Gorbi and al., Environmental Pollution, Volume 227, August 2017,  Pages 207–214

The article