Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment

Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m−2/L−1 in one wash, compared with polyester fabrics which shed 87 fibers/m−2/L−1. We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

Bethanie M. Carney Almroth, Linn Åström, Sofia Roslund, Hanna Petersson, Mats Johansson, Nils-Krister Persson, Environmental Science and Pollution Research, pp 1–9,

The article


Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?

Monitoring the presence of microplastics (MP) in marine organisms is currently of high importance. This paper presents the qualitative and quantitative MP contamination of two bivalves from the French Atlantic coasts: the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas). Three factors potentially influencing the contamination were investigated by collecting at different sampling sites and different seasons, organisms both wild and cultivated. Inter- and intra-species comparisons were also achieved. MP quantity in organisms was evaluated at 0.61 ± 0.56 and 2.1 ± 1.7 MP per individual respectively for mussels and oysters. Eight different polymers were identified. Most of the MPs were fragments; about a half of MPs were grey colored and a half with a size ranging from 50 to 100 μm for both studied species. Some inter-specific differences were found but no evidence for sampling site, season or mode of life effect was highlighted.

Nam Ngoc Phuong, Laurence Poirier, Quoc Tuan Pham, Fabienne Lagarde, atlAurore Zalouk-Vergnoux, Marine Pollution Bulletin, Available online 26 October 2017, In Press

The article

Anthropogenic microlitter in the Baltic Sea water column

Microlitter (0.5–5 mm) concentrations in water column (depth range from 0 to 217.5 m) of the main Baltic Proper basins are reported. In total, 95 water samples collected in 6 research cruises in 2015–2016 in the Bornholm, Gdansk, and Gotland basins were analysed. Water from 10- and 30-litre Niskin bathometers was filtered through the 174 μm filters, and the filtrate was examined under optical microscope (40 ×). The bulk mean concentration was 0.40 ± 0.58 items per litre, with fibres making 77% of them. Other types of particles are the paint flakes (19%) and fragments (4%); no microbeads or pellets. The highest concentrations are found in the near-bottom samples from the coastal zone (2.2–2.7 items per litre max) and from near-surface waters (0.5 m) in the Bornholm basin (5 samples, 1.6–2.5 items per litre). Distribution of particles over depths, types, and geographical regions is presented.

A. Bagaev, L. Khatmullina, I. Chubarenko, Marine Pollution Bulletin, Available online 26 October 2017, In Press

The article

Evaluation of microplastic release caused by textile washing processes of synthetic fabrics

Image 1A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.

Francesca De Falco, Maria Pia Gullo, Gennaro Gentile and al., Environmental Pollution, Available online 27 October 2017, In Press

The article

Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China

Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams. The tris-(2-chloroethyl)-phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP) and di-(2-ethylhexyl) phthalate (DEHP) were the three predominant compounds found overall. The maximum Σ4 OPEs concentration was 84,595.9 ng g− 1, almost three orders of magnitude higher than the maximum Σ9 PAEs concentration. The PP flakes and PS foams contained the highest concentrations of the additives in contrast to the PE pellets which contained the lowest. The high concentration level of carcinogenic chlorinated OPEs and DEHP with endocrine disrupting effects implied the suggested potential hazards to coastal organisms. Spatial differences and compositional variation of the additives among the different microplastics suggests different origins and residence times in the coastal environment. This indicates that the characteristics of chemical additives might be a useful approach when tracing sources of microplastics in the environment.

Haibo Zhang, Qian Zhou, Zhiyong Xie and al., Science of The Total Environment, Available online 28 October 2017, In Press

The article

Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake

Plastic pollution is considered an important environmental problem by the United Nations Environment Programme, and it is identified, alongside climate change, as an emerging issue that might affect biological diversity and human health. However, despite research efforts investigating plastics in oceans, relatively little studies have focused on freshwater systems. The aim of this study was to estimate the spatial distribution, types, and characteristics of macro-, meso-, and microplastic fragments in shoreline sediments of a freshwater lake. Food wrappers (mainly polypropylene and polystyrene), bags (high- and low-density polyethylene), bottles (polyethylene terephthalate), and disposable Styrofoam food containers (expanded polystyrene) were the dominant macroplastics recorded in this study. Contrary to other studies, herein macroplastic item surveys would not serve as surrogates for microplastic items. This is disadvantageous since macroplastic surveys are relatively easier to conduct. Otherwise, an average of 25 mesoplastics (mainly expanded polystyrene) and 704 microplastic particles (diverse resins) were recorded per square meter in sandy sediments. Comparisons with other studies from freshwater and marine beaches indicated similar relevance of plastic contamination, demonstrating for the first time that plastic pollution is a serious problem in the Paraná floodplain lakes. This study is also valuable from a social/educational point of view, since plastic waste has been ignored in the Paraná catchment as a pollutant problem, and therefore, the outcome of the current study is a relevant contribution for decision makers.

Martin C. M. Blettler, Maria Alicia Ulla, Ana Pia Rabuffetti, Nicolás Garello, Environmental Monitoring and Assessment, , 189:581,

The article

Negative effects of microplastic exposure on growth and development of Crepidula onyx

Image 1Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates’ life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-μm microplastic beads ml−1), larval and juvenile C. onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C. onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure.

Hau Kwan Abby Lo, Kit Yu Karen Chan, Environmental Pollution, Volume 233, February 2018, Pages 588–595

The article