Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures

Our aim was to quantify microplastic ingestion by fish assemblages in two tropical Brazilian estuaries and to evaluate whether biological and ecological factors influence the ingestion of microplastics by fish species. Of 2233 fish from both estuaries (from 69 species) examined in this study, 9% of the individuals (24 species) had microplastics in their gut contents. Microplastic ingestion occurred irrespective of fish size and functional group. The diet of fish species was analyzed based on prey items identified in the fish’s full stomach contents and five feeding guilds were defined. Microplastics were common throughout all feeding guilds. Low (average ingestion values 1.06 ± 0.30 items/total fish) but widespread occurrence among estuaries also indicates proliferation of microplastic pollution. Our findings highlight the need to focus on assemblage level studies to understand the real magnitude of the problem and emphasize the urgency of mitigation measures directed at microplastic pollution in estuarine ecosystems.

A.L. Vendel, F. Bessa, V.E.N. Alves, A.L.A. Amorim, J. Patrício, A.R.T. Palma, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 448–455

The article

Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity

This study investigated the direct and indirect toxic effects of microplastics and nanoplastics toward zebrafish (Danio rerio) larvae locomotor activity. Results showed that microplastics alone exhibited no significant effects except for the upregulated zfrho visual gene expression; whereas nanoplastics inhibited the larval locomotion by 22% during the last darkness period, and significantly reduced larvae body length by 6%, inhibited the acetylcholinesterase activity by 40%, and upregulated gfap, α1-tubulin, zfrho and zfblue gene expression significantly. When co-exposed with 2 μg/L 17 α-ethynylestradiol (EE2), microplastics led to alleviation on EE2’s inhibition effect on locomotion, which was probably due to the decreased freely dissolved EE2 concentration. However, though nanoplastics showed stronger adsorption ability for EE2, the hypoactivity phenomenon still existed in the nanoplastics co-exposure group. Moreover, when co-exposed with a higher concentration of EE2 (20 μg/L), both plastics showed an enhanced effect on the hypoactivity. Principal component analysis was performed to reduce data dimensions and four principal components were reconstituted in terms of oxidative stress, body length, nervous and visual system related genes explaining 84% of total variance. Furthermore, oxidative damage and body length reduction were evaluated to be main reasons for the hypoactivity. Therefore, nanoplastics alone suppressed zebrafish larvae locomotor activity and both plastic particles can change the larvae swimming behavior when co-exposed with EE2. This study provides new insights into plastic particles’ effects on zebrafish larvae, improving the understanding of their environmental risks to the aquatic environment.

Qiqing Chen, Michael Gundlach, Shouye Yang and al., Science of The Total Environment, Volumes 584–585, 15 April 2017, Pages 1022–1031

The article

Assessment of marine debris on the coastal wetland of Martil in the North-East of Morocco

Plastic waste at the coastal wetland in Martil beach in the North-East of Morocco is one of the problems that have appeared recently. This study aims to characterize the marine debris in the coast of Martil during the year 2015. The sampling is seasonally by type and size. The result shows, for the macro debris, the abundance of plastic (57%), lumber and paper (21.93%), cloth and fabric (7.8%), glass (5.42%), metal (4.40%), and rubber (3.4%). Micro debris is also present in the area in several forms such as wood, plants, and others by 75,63%. This was followed by the foam (26,95%), line (7,8%), and the film (1,23%). The seasonal variation (S1: January–March and S3: July to September) are the most polluted months of the year. The sources of marine debris are mainly tourism (beach users), land (run off), and commercial fishing in the four seasons of the year.

Adel Alshawafi, Mohamed Analla, Ebrahim Alwashali, Mustapha Aksissou, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 302–310

The article

Textile microplastics: causes and cures – improving our understanding of the drivers of fibre loss during washing (PhD Project)

Government drops opposition to Bill banning microplastics

The Government has reversed a decision to oppose a Labour Party Bill banning the use of microplastics and microbeads in personal care items including scrubs, soaps, lotions and toothpastes.

Minister for Housing Simon Coveney had originally planned to reject the Prohibition of microplastics Bill on the grounds that it could place Ireland in breach of EU Treaty articles on the free movement of goods and that it was flawed in definitions, enforcement and its “level of ambition”.

But in the Dáil on Thursday he told the Bill’s author, Cork East Labour TD Seán Sherlock, that the Government would not oppose the legislation but would probably abstain and allow it to proceed on the basis that “if and when we produce the Government’s legislative response to this whether in the foreshore Bill or in a separate piece of legislation after the work that needs to be done first”. (…) (irishtimes.com, 4/05/2017)

The news

Freshwater’s macro microplastic problem

Like in the oceans, the bulk of the pollution in rivers and lakes is not in the form of plastic bottles and other large pieces, but tiny pieces called microplastics that would be hard to spot. “Three quarters of what we take out of the Great Lakes are less than a millimeter in size,” she says. “It’s basically the size of a period of a sentence.” These plastics are concerning to scientists because they are being ingested by a variety of aquatic organisms. (…) (pbs.org, 11/05/2017)

The news