Beach litter dynamics on Mediterranean coasts: Distinguishing sources and pathways

We assessed amounts, composition and net accumulation rates every ~ 15 days of beach macro litter (≥ 2.5 cm) on 4 Mediterranean beaches, on Corfu island, N. Ionian Sea, taking into account natural and anthropogenic drivers. Average net accumulation rate on all beaches was found 142 ± 115 N/100 m/15 d. By applying a Generalized Linear Model (GzLM) it was shown that sea transport is the dominant pathway affecting the amount and variability in beach litter loadings. Principal Component Analysis (PCA) on compositional data and indicator items discerned two more pathways of beach litter, i.e. in situ litter from beach goers and wind and/or runoff transport of litter from land. By comparing the PCA results to those from a simple item to source attribution, it is shown that regardless their source litter items arrive at beaches from various pathways. Our data provide baseline knowledge for designing monitoring strategies and for setting management targets.

Michael Prevenios, Christina Zeri, Catherine Tsangaris and al., Marine Pollution Bulletin, Available online 10 October 2017, In Press

The article


Amount, composition, and spatial distribution of floating macro litter along fixed trans-border transects in the Mediterranean basin

Marine litter is a major source of pollution in the Mediterranean basin, but despite legislative requirements, scant information is available for the ongoing assessment of this threat.

Using higher size classes as proxy for litter distribution, this study gave a synoptic estimation of the amount, composition, and distribution of floating macro-litter in the Mediterranean. The average amount of macro-litter was in a range of 2–5 items/km2, with the highest in the Adriatic basin. Seasonal patterns were present in almost all study areas and were significant in the Ligurian Sea, Sardinian-Balearic basin, and Central Tyrrhenian Sea. Plastic accounted for > 80% of litter in all areas and seasons, with the highest proportion in the Adriatic Sea, Ligurian Sea, and Sicilian-Sardinian Channels; in the Bonifacio Strait, Tyrrhenian Sea, and Sardinian-Balearic basin, litter composition was instead more diverse. Spatial analysis suggested an almost homogeneous distribution of litter without evident regular aggregation zones.

Arcangeli Antonella, Campana Ilaria, Angeletti Dario and al., Marine Pollution Bulletin, Available online 16 October 2017, In Press

The article

Is it possible to implement a complex adaptive systems approach for marine systems? The experience of Italy and the Adriatic Sea


• This paper evaluates the implementation of the MSFD in the Adriatic Sea.
• The MSFD is the first policy for marine complex adaptive systems in the EU.
• Ecological and jurisdictional boundaries overlap and cross-border cooperation is low.
• Integrative assessments of marine systems may be impossible to achieve.
• Relative isolation of theoretical approaches and management practices.

Emanuele Bigagli, Ocean & Coastal Management, Volume 149, 15 November 2017, Pages 81–95

The article

Spatial distribution of marine debris on the seafloor of Moroccan waters

Marine debris pollution is considered as a worldwide problem and a direct threat to the environment, economy and human health. In this paper, we provide the first quantitative assessment of debris on the seafloor of the southern part of the economic exclusive waters of Morocco. The data were collected in a scientific trawl survey carried out from 5 to 25 October 2014 between (26N) to (21N) covering different stratums of depths (from 10 to 266 m) and following a sampling network of 100 stations distributed randomly in the study area. A total of 603 kg of debris was collected and sorted into five main categories: plastic, metal, rubber, textiles and glass. Over 50% of collected items was made by plastic, 94% of them are the plastic fishing gear used to capture the Octopus vulgaris. The analysis of the distribution shows that anthropogenic debris is present in the majority of the prospected area (∼ 47,541 km2) with different densities ranging from 0 to 1768 (± 298,15) kg/km2. The spatial autocorrelation approach using GIS shows that the concentration of this debris is correlated very well with a set of factors such as the proximity to fishing activity sites. Moreover, the mechanism of transportation and dispersion was influenced by the hydrodynamic properties of the region.

S. Loulad, R. Houssa, H Rhinane and al., Marine Pollution Bulletin, Available online 24 July 2017, In Press, Corrected Proof

The article

Marine litter from beach-based sources: Case study of an Eastern Mediterranean coastal town

Marine litter has been a serious and growing problem for some decades now. Yet, there is still much speculation among researchers, policy makers and planners about how to tackle marine litter from land-based sources. This paper provides insights into approaches for managing marine litter by reporting and analyzing survey results of litter dispersal and makeup from three areas along an Arab-Israeli coastal town in view of other recent studies conducted around the Mediterranean Sea. Based on our results and analysis, we posit that bathing beach activities should be a high priority for waste managers as a point of intervention and beach-goers must be encouraged to take a more active role in keeping beaches clean. Further, plastic fragments on the beach should be targeted as a first priority for prevention (and cleanup) of marine litter with plastic bottle caps being a high priority to be targeted among plastics. More survey research is needed on non-plastic litter composition for which amounts and geographic dispersal in the region vary greatly from place to place along Mediterranean shores. In general, findings of this study lead us to recommend exploring persuasive beach trash can design coupled with greater enforcement for short term waste management intervention while considering the local socio-economic and institutional context further for long-term efforts.

M. E. Portman, R. E. Brennan, Waste Management, Volume 69, November 2017, Pages 535-544

The article

Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress

A total of 417 striped red mullet, Mullus surmuletus, were analyzed to study microplastic ingestion and livers of fish were assessed to study effects of microplastics. Nearly one third (27.30%) of the individuals were quantified to ingest microplastics although there was no evidence of oxidative stress or cellular damage in the liver of fish which had ingested microplastics. A small increase in the activity of glutathione S-transferase (GST) of M. surmuletus was detected which could be suggesting an induction of the detoxification systems but these findings should be tested in laboratory conditions under a controlled diet and known concentration of microplastics. Fish from trammel fisheries, operating closer to land and targeting larger individuals, showed higher mean ingestion values than fish from trawling fisheries, and were related to body size, as microplastics ingested increased with total fish length. Consequently, ingestion values of microplastics were not related to sampling distance from land giving further evidence of the ubiquity of microplastics in the marine environment. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that the vast majority of microplastics were filament type and polyethylene terephthalate (PET) was the main identified component.

C. Alomar, A Sureda, X. Capo and al., Environmental Research, Volume 159, November 2017, Pages 135-142

The article

Fouling assemblage of benthic plastic debris collected from Mersin Bay, NE Levantine coast of Turkey

The Mediterranean is an ecosystem that faces more and more microplastic pollution every day. This causes the whole of the Mediterranean to face the negative effects of plastic pollution. This study examines the state of plastic debris and fouling organisms found on it in one of the areas most affected by plastic pollution, Mersin Bay. As a result, a total of 3.88 kg plastic (mean = 0,97 kg; n = 120; 2670 item/km2; 86,3 kg/km2) was collected and based on the ATR-FTIR analysis, it was determined that this total contained 9 types of plastics. 17 different fouling species belonging to 6 phylum (Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Mollusca) 7 class and 11 order were discovered on plastics. Spirobranchus triqueter, Hydroides sp. and Neopycnodonte cochlear were the most abundant species. In the end, the example of Mersin Bay shows that plastic debris as a substrate can contain a very high diversity of life just like natural substrates.

Sedat Gündoğdu, Cem Çevik, Serkan Karaca, Marine Pollution Bulletin, Volume 124, Issue 1, 15 November 2017, Pages 147-154

The article