Marine microplastic debris: An emerging issue for food security, food safety and human health

Recent studies have demonstrated the negative impacts of microplastics on wildlife. Therefore, the presence of microplastics in marine species for human consumption and the high intake of seafood (fish and shellfish) in some countries cause concern about the potential effects of microplastics on human health. In this brief review, the evidence of seafood contamination by microplastics is reviewed, and the potential consequences of the presence of microplastics in the marine environment for human food security, food safety and health are discussed. Furthermore, challenges and gaps in knowledge are identified. The knowledge on the adverse effects on human health due to the consumption of marine organisms containing microplastics is very limited, difficult to assess and still controversial. Thus, assessment of the risk posed to humans is challenging. Research is urgently needed, especially regarding the potential exposure and associated health risk to micro- and nano-sized plastics.

Luís Gabriel Antão Barboza, A. Dick Vethaak, Beatriz R.B.O. Lavorante and al., Marine Pollution Bulletin, Volume 133, August 2018, Pages 336–348

The article

Advertisements

Identification of microplastics using Raman spectroscopy: Latest developments and future prospects

Widespread microplastic pollution is raising growing concerns as to its detrimental effects upon living organisms. A realistic risk assessment must stand on representative data on the abundance, size distribution and chemical composition of microplastics. Raman microscopy is an indispensable tool for the analysis of very small microplastics (<20 μm). Still, its use is far from widespread, in part due to drawbacks such as long measurement time and proneness to spectral distortion induced by fluorescence. This review discusses each drawback followed by a showcase of interesting and easily available solutions that contribute to faster and better identification of microplastics using Raman spectroscopy. Among discussed topics are: enhanced signal quality with better detectors and spectrum processing; automated particle selection for faster Raman mapping; comprehensive reference libraries for successful spectral matching. A last section introduces non-conventional Raman techniques (non-linear Raman, hyperspectral imaging, standoff Raman) which permit more advanced applications such as real-time Raman detection and imaging of microplastics.

Catarina F. Araujo, Mariela M. Nolasco, Antonio M.P. Ribeiro, Paulo J.A. Ribeiro-Claro, Water Research, Volume 142, 1 October 2018, Pages 426-440

The article

Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis

The widespread occurrence of microplastics (MP) in the marine environment is cause of increasing concerns about the safety of the exposed ecosystems. Although the effects associated to the MP uptake have been studied in most marine taxa, the knowledge about their sub-lethal impacts on early life stages of marine species is still limited. Here, we investigated the uptake/retention of 3-μm polystyrene MP by early stages of the Mediterranean mussel Mytilus galloprovincialis, and the related effects on gut clearance, feeding efficiency, morphological and transcriptional parameters involved in embryo-larval development. Uptake measurements were performed on larvae at 48 h, 3, 6 and 9 days post fertilization (pf) after exposure to a range of 50–10,000 particles mL−1. At all tested pf periods, treatments resulted in a significant and linear increase of MP uptake with increasing concentrations, though levels measured at 48 h pf were significantly lower compared to 3–9 d pf. Ingested MP were retained up to 192 h in larvae’s gut, suggesting a physical impact on digestive functions. No change was noted between the consumption of microalgae Nannochloropsis oculata by larvae when administered alone or in the presence of an identical concentration (2000 items mL−1) of MP. The exposure to 50–10,000 MP mL−1 did not alter the morphological development of mussel embryos; however, transcriptional alterations were observed at 50 and 500 MP mL−1, including the up-regulation of genes involved in shell biogenesis (extrapallial protein; carbonic anhydrase; chitin synthase) and immunomodulation (myticin C; mytilin B), and the inhibition of those coding for lysosomal enzymes (hexosaminidase; β-glucorinidase; catepsin-L). In conclusion, though not highlighting morphological or feeding abnormalities, data from this study revealed the onset of physical and transcriptional impairments induced by MP in mussel larvae, indicating sub-lethal impacts which could increase their vulnerability toward further environmental stressors.

Marco Capolupo, Silvia Franzellitti, Paola Valbonesi, Claudia Sanz Lanzas, Elena Fabbri, Environmental Pollution, Volume 241, October 2018, Pages 1038–1047

The article

Investigating microplastic trophic transfer in marine top predators

Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1–4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.

S. E. Nelms, T. S. Galloway, B. J. Godley and al., Environmental Pollution, Volume 238, July 2018, Pages 999-1007

The article

Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver

As a widespread and ubiquitous pollutant of marine ecosystems, microplastic has the potential to become an emerging global threat for aquatic organisms. The present study aims to elucidate the effects of microplastics on the growth, accumulation and oxidative stress response in the liver of Eriocheir sinensis. Fluorescent microplastic particles (diameter = 0.5 μm) accumulated in the gill, liver and gut tissues of E. sinensis were investigated when crabs were exposed to a concentration of 40000 μg/L for 7 days. A 21 day toxicity test suggested that the rate of weight gain, specific growth rate, and hepatosomatic index of E. sinensis decreased with increasing microplastic concentration (0 μg/L, 40 μg/L, 400 μg/L, 4000 μg/L and 40000 μg/L). The activities of AChE and GPT in crabs exposed to microplastics were lower than those in control group. GOT activity increased significantly after exposure to a low concentration of microplastics and then decreased continuously with increasing microplastic concentrations. The activities of superoxide dismutase (SOD), aspartate transaminase (GOT), glutathione (GSH), and glutathione peroxidase (GPx) increased in specimens exposed to low concentrations of microplastics (40 and 400 μg/L) compared to the control and decreased in organisms exposed to high concentrations (4000 and 40000 μg/L). In contrast, the activities of acetylcholinesterase, catalase (CAT), and alanine aminotransferase were significantly lower in the organisms exposed to microplastics compared to control animals. Upon exposure to increasing microplastic concentrations, the expression of genes encoding the antioxidants SOD, CAT, GPx and glutathione S-transferase in the liver decreased after first increasing. Exposure to microplastics increased the expression of the gene encoding p38 in the MAPK signaling pathway and significantly decreased the expressions of genes encoding ERK, AKT, and MEK. The results of this study demonstrate that microplastics can accumulate in the tissues of E. sinensis and negatively affect growth. In addition, exposure to microplastics causes damage and induces oxidative stress in the hepatopancreas of E. sinensis. The findings provide basic biological data for environmental and human risk assessments of microplastics of high concern.

P. Yu, Z. Liu, D. Wu and al., Aquatic Toxicology, Volume 200, July 2018, Pages 28-36

The article

Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress

Microplastics (<5 mm, MP) are ubiquitously distributed in the environment, causing increasing concern regarding their potential toxicity to organisms. To date, most research has focussed on the impacts of MPs on marine and estuarine organisms, with fewer studies focussing on the effects of microplastics on freshwater ecosystems, especially under different environmental conditions. In the present study, the sensitivity of two temperate Cladoceran species, Daphnia magna and Daphnia pulex, and a smaller tropical species Ceriodaphnia dubia, to primary microplastics (PMP) and secondary (weathered) microplastics (SMP) was assessed. A prolonged acute toxicity assay (up to 72 or 96 h) was performed at 18°, 22°, and 26 °C, to determine the influence of temperature as an additional stressor and survival data were analysed using toxicokinetic-toxicodynamic (TK-TD) model. Acute sensitivity of D. magna and D. pulex to both PMP and SMP increased sharply with temperature, whereas that of C. dubia remained relatively stable across temperatures. C. dubia was the most sensitive species at 18 °C, followed by D. pulex and D. magna, which were of comparable sensitivity. However, this ranking was reversed at 26 °C as could be seen from the No Effect Concentration (NEC) estimates of the TK-TD model. In addition, SMP and PMP had a similar effect on D. magna and D. pulex, but PMP was more toxic to C. dubia. Effects on survival were strongly time-dependent and became substantially more severe after the standard 48 h test period. Our results indicate that sensitivity to microplastics may differ between species for different types of microplastics, and could be drastically influenced by temperature albeit at high exposure concentrations.

G. Jaikumar, J. Baas, N. R. Brun and al., Environmental Pollution, Volume 239, August 2018, Pages 733-740

The article

Spatial occurrence and effects of microplastic ingestion on the deep-water shrimp Aristeus antennatus

Microplastic (MP) ingestion has been reported in a wide variety of organisms, however, its spatial occurrence and effects on wild populations remain quite unknown. The present study targets an economically and ecologically key species in the Mediterranean Sea, the shrimp Aristeus antennatus. 39.2% of the individuals sampled had MP in their stomachs, albeit in areas close to Barcelona city the percentage reached values of 100%. Overall, MP ingestion was confirmed in a wide spatial and depth (630–1870 m) range, pointing out the great dispersion of this pollutant. The benthophagous diet and close relationship with the sea bottom of A. antennatus might enhance MP exposure and ultimately lead to accidental ingestion. Detailed analysis of shrimps’ diet revealed that individuals with MP had a higher presence of endobenthic prey. Microplastic fibers are probably retained for long periods due to stomach’s morphology, but no negative effects on shrimp’s biological condition were observed.

E. Carreras-Colom, M. Constenla, A. SolerMembrives and al., Marine Pollution Bulletin, Volume 133, August 2018, Pages 44-52

The article