Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment

Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m−2/L−1 in one wash, compared with polyester fabrics which shed 87 fibers/m−2/L−1. We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

Bethanie M. Carney Almroth, Linn Åström, Sofia Roslund, Hanna Petersson, Mats Johansson, Nils-Krister Persson, Environmental Science and Pollution Research, pp 1–9,

The article

Advertisements

Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?

Monitoring the presence of microplastics (MP) in marine organisms is currently of high importance. This paper presents the qualitative and quantitative MP contamination of two bivalves from the French Atlantic coasts: the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas). Three factors potentially influencing the contamination were investigated by collecting at different sampling sites and different seasons, organisms both wild and cultivated. Inter- and intra-species comparisons were also achieved. MP quantity in organisms was evaluated at 0.61 ± 0.56 and 2.1 ± 1.7 MP per individual respectively for mussels and oysters. Eight different polymers were identified. Most of the MPs were fragments; about a half of MPs were grey colored and a half with a size ranging from 50 to 100 μm for both studied species. Some inter-specific differences were found but no evidence for sampling site, season or mode of life effect was highlighted.

Nam Ngoc Phuong, Laurence Poirier, Quoc Tuan Pham, Fabienne Lagarde, atlAurore Zalouk-Vergnoux, Marine Pollution Bulletin, Available online 26 October 2017, In Press

The article

Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China

Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams. The tris-(2-chloroethyl)-phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP) and di-(2-ethylhexyl) phthalate (DEHP) were the three predominant compounds found overall. The maximum Σ4 OPEs concentration was 84,595.9 ng g− 1, almost three orders of magnitude higher than the maximum Σ9 PAEs concentration. The PP flakes and PS foams contained the highest concentrations of the additives in contrast to the PE pellets which contained the lowest. The high concentration level of carcinogenic chlorinated OPEs and DEHP with endocrine disrupting effects implied the suggested potential hazards to coastal organisms. Spatial differences and compositional variation of the additives among the different microplastics suggests different origins and residence times in the coastal environment. This indicates that the characteristics of chemical additives might be a useful approach when tracing sources of microplastics in the environment.

Haibo Zhang, Qian Zhou, Zhiyong Xie and al., Science of The Total Environment, Available online 28 October 2017, In Press

The article

Negative effects of microplastic exposure on growth and development of Crepidula onyx

Image 1Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates’ life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-μm microplastic beads ml−1), larval and juvenile C. onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C. onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure.

Hau Kwan Abby Lo, Kit Yu Karen Chan, Environmental Pollution, Volume 233, February 2018, Pages 588–595

The article

No increase in marine microplastic concentration over the last three decades – A case study from the Baltic Sea

Microplastic is considered a potential threat to marine life as it is ingested by a wide variety of species. Most studies on microplastic ingestion are short-term investigations and little is currently known about how this potential threat has developed over the last decades where global plastic production has increased exponentially. Here we present the first long-term study on microplastic in the marine environment, covering three decades from 1987 to 2015, based on a unique sample set originally collected and conserved for food web studies. We investigated the microplastic concentration in plankton samples and in digestive tracts of two economically and ecologically important planktivorous forage fish species, Atlantic herring (Clupea harengus) and European sprat (Sprattus sprattus), in the Baltic Sea, an ecosystem which is under high anthropogenic pressure and has undergone considerable changes over the past decades. Surprisingly, neither the concentration of microplastic in the plankton samples nor in the digestive tracts changed significantly over the investigated time period. Average microplastic concentration in the plankton samples was 0.21 ± 0.15 particles m− 3. Of 814 fish examined, 20% contained plastic particles, of which 95% were characterized as microplastic (< 5 mm) and of these 93% were fibres. There were no significant differences in the plastic content between species, locations, or time of day the fish were caught. However, fish size and microplastic in the digestive tracts were positively correlated, and the fish contained more plastic during summer than during spring, which may be explained by increased food uptake with size and seasonal differences in feeding activity. This study highlights that even though microplastic has been present in the Baltic environment and the digestive tracts of fishes for decades, the levels have not changed in this period. This underscores the need for greater understanding of how plastic is cycled through marine ecosystems. The stability of plastic concentration and contamination over time observed here indicates that the type and level of microplastic pollution may be more closely correlated to specific human activities in a region than to global plastic production and utilization as such.

Sabrina Beer, Anders Garm, Bastian Huwer, Jan Dierking, Torkel Gissel Nielsen, Science of The Total Environment, Available online 19 October 2017, In Press

The article

Spatial variability in the concentrations of metals in beached microplastics

Heavy metals and microplastics have been considered as threats to the marine environment and the interactions between these two pollutants are poorly understood. This study investigates the interactions between metals adsorbed in pellets collected randomly from 19 beaches along the coast of São Paulo State in southeastern Brazil, comparing these levels with those in virgin pellets. The samples were analyzed for Al, Cr, Cu, Fe, Mn, Sn, Ti and Zn by inductively coupled plasma optical emission spectroscopy (ICP-OES). The polymers were solubilized via acid digestion. The highest levels occurred with Fe (227.78 mg kg− 1 – Itaguaré) and Al (45.27 mg kg− 1 – Guaraú) in the same areas, which are closer to the Port of Santos. The metal adsorption on pellets collected is greater than that on virgin pellets. In this context, pellets can be considered to be a carrier for the transport of metals in the environment, even in small quantities.

M.C. Vedolin, C.Y.S. Teophilo, A. Turra, R.C.L. Figueira, Marine Pollution Bulletin, Available online 13 October 2017, In Press

The article

Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus?

The ingestion of microplastics (plastic particles <5 mm) has been observed in a range of marine organisms, and adverse effects have been reported in several species after high concentration exposure. However, the long-term effects of low-dose ingestion remains unclear. The aim of this study was thus to assess the chronic effects of low concentrations of polystyrene microparticles to the intertidal amphipod Echinogammarus marinus, using food consumption, growth, and moulting as endpoints. Amphipods were fed a gelatinous algal feed spiked with microbeads (8 μm) in concentrations of ∼0.9, 9 and 99 microplastics/g for 35 days. E. marinus was also analysed for retention of microplastics, and egestion rate was calculated in a separate high-dose feeding experiment. No significant effects were found in the food consumption or growth assays. There was no accumulation of microplastics in the gut, with only one microbead recorded internally in three (8%) of the exposed amphipods. The low number is likely linked to gastrointestinal functions, allowing for easy egestion of indigestible items. This assumption was supported by the observation that after high-dose exposure, 60% of E. marinus egested all microbeads within 24 h. This study suggests that ingesting low concentrations of 8 μm microplastics do not impair the feeding or growth of amphipods along the exposure period. We hope that negative results such as these may further assist in assessing the impact posed by microplastics to marine organisms.

Sarah Bruck, Alex T. Ford, Environmental Pollution, Available online 14 October 2017, In Press

The article