No increase in marine microplastic concentration over the last three decades – A case study from the Baltic Sea

Microplastic is considered a potential threat to marine life as it is ingested by a wide variety of species. Most studies on microplastic ingestion are short-term investigations and little is currently known about how this potential threat has developed over the last decades where global plastic production has increased exponentially. Here we present the first long-term study on microplastic in the marine environment, covering three decades from 1987 to 2015, based on a unique sample set originally collected and conserved for food web studies. We investigated the microplastic concentration in plankton samples and in digestive tracts of two economically and ecologically important planktivorous forage fish species, Atlantic herring (Clupea harengus) and European sprat (Sprattus sprattus), in the Baltic Sea, an ecosystem which is under high anthropogenic pressure and has undergone considerable changes over the past decades. Surprisingly, neither the concentration of microplastic in the plankton samples nor in the digestive tracts changed significantly over the investigated time period. Average microplastic concentration in the plankton samples was 0.21 ± 0.15 particles m− 3. Of 814 fish examined, 20% contained plastic particles, of which 95% were characterized as microplastic (< 5 mm) and of these 93% were fibres. There were no significant differences in the plastic content between species, locations, or time of day the fish were caught. However, fish size and microplastic in the digestive tracts were positively correlated, and the fish contained more plastic during summer than during spring, which may be explained by increased food uptake with size and seasonal differences in feeding activity. This study highlights that even though microplastic has been present in the Baltic environment and the digestive tracts of fishes for decades, the levels have not changed in this period. This underscores the need for greater understanding of how plastic is cycled through marine ecosystems. The stability of plastic concentration and contamination over time observed here indicates that the type and level of microplastic pollution may be more closely correlated to specific human activities in a region than to global plastic production and utilization as such.

Sabrina Beer, Anders Garm, Bastian Huwer, Jan Dierking, Torkel Gissel Nielsen, Science of The Total Environment, Available online 19 October 2017, In Press

The article


Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study

Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm – 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues.

Sutapa Ghosal, Michael Chen, Jeff Wagner, Zhong-Min Wang, Stephen Wall, Environmental Pollution, Available online 13 October 2017, In Press

The article

Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain

The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

Karin Mattsson, Elyse V. Johnson, Anders Malmendal, Sara Linse, Lars-Anders Hansson, Tommy Cedervall, Scientific Reports, 7, Article number: 11452, 2017

The article

Marine debris boost in juvenile Magellanic penguins stranded in south-eastern Brazil in less than a decade: Insights into feeding habits and habitat use

The Magellanic penguin (Spheniscus magellanicus) is a marine sentinel for the southern Atlantic Ocean that is a proxy of environmental quality. The presence of marine debris (macro-debris) in the stomach contents of emaciated juvenile penguins stranded from 21°S to 23°S was compared at different times (2000 and 2008), and the debris ingestion pathway was determined. The frequency of marine debris in the stomachs doubled in less than a decade, and flexible plastics remained the main ingested item over time (68–70%). The pelagic octopus, Argonauta nodosa, which inhabits the sea surface, was the most important prey species recovered in the stomach contents. The poor physical condition of the penguins that reach the northern migration limit (study area) reduces the diving capacity of the animals and increases their vulnerability to debris ingestion. Considering their preferred prey and physical condition, we conclude that the penguins likely ingested the marine debris in surface waters.

Ana Paula Madeira Di Beneditto, Salvatore Siciliano, Marine Pollution Bulletin, Available online 25 September 2017, In Press

The article

Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida

Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases.

Manca Kovač Viršek, Marija Nika Lovšin, Špela Koren, Andrej Kržan, Monika Peterlin, Marine Pollution Bulletin, Available online 7 September 2017, In Press

The article

Microplastics in livers of European anchovies (Engraulis encrasicolus, L.)

Microplastics (MPs) are thought to be ingested by a wide range of marine organisms before being excreted. However, several studies in marine organisms from different taxa have shown that MPs and nanoplastics could be translocated in other organs. In this study, we investigated the presence of MPs in the livers of commercial zooplanktivorous fishes collected in the field. The study focuses mainly on the European anchovy Engraulis encrasicolus but concerns also the European pilchard Sardina pilchardus and the Atlantic herring Clupea harengus. Two complementary methodologies were used to attest the occurrence of MPs in the hepatic tissue and to exclude contamination. 1) MPs were isolated by degradation of the hepatic tissue. 2) Cryosections were made on the livers and observed in polarized light microscopy. Both methods separately revealed that MPs, mainly polyethylene (PE), were translocated into the livers of the three clupeid species. In anchovy, 80 per cent of livers contained relatively large MPs that ranged from 124 μm to 438 μm, showing a high level of contamination. Two translocation pathways are hypothesized: (i) large particles found in the liver resulted from the agglomeration of smaller pieces, and/or (ii) they simply pass through the intestinal barrier. Further studies are however required to understand the exact process.

France Collard, Bernard Gilbert, Philippe Compere, Gauthier Eppe, Krishna Das,
Thierry Jauniaux, Eric Parmentier, Environmental Pollution,
Volume 229, October 2017, Pages 1000-1005

The article

Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress

A total of 417 striped red mullet, Mullus surmuletus, were analyzed to study microplastic ingestion and livers of fish were assessed to study effects of microplastics. Nearly one third (27.30%) of the individuals were quantified to ingest microplastics although there was no evidence of oxidative stress or cellular damage in the liver of fish which had ingested microplastics. A small increase in the activity of glutathione S-transferase (GST) of M. surmuletus was detected which could be suggesting an induction of the detoxification systems but these findings should be tested in laboratory conditions under a controlled diet and known concentration of microplastics. Fish from trammel fisheries, operating closer to land and targeting larger individuals, showed higher mean ingestion values than fish from trawling fisheries, and were related to body size, as microplastics ingested increased with total fish length. Consequently, ingestion values of microplastics were not related to sampling distance from land giving further evidence of the ubiquity of microplastics in the marine environment. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that the vast majority of microplastics were filament type and polyethylene terephthalate (PET) was the main identified component.

C. Alomar, A Sureda, X. Capo and al., Environmental Research, Volume 159, November 2017, Pages 135-142

The article