Ingestion of microplastics and natural fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast

The ingestion of microplastics and natural fibres (<5 mm) was assessed for two commercial fish species in the western Mediterranean Sea: Sardina pilchardus and Engraulis encrasicolus. Gastrointestinal tracts from 210 individuals from 14 stations were examined with 14.28–15.24% of the small pelagic fish S. pilchardus and E. encrasicolus having ingested microplastics and natural fibres. A latitudinal increase in condition index (Fulton’s K) of S. pilchardus gave an indication that larger individuals with better physical condition are less likely to ingest microplastics and natural fibres. Fibres were the most frequent particle type (83%) and Fourier Transform Infrared spectroscopy (FT-IR) analysis indicated polyethylene terephthalate was the most common microplastics material (30%). Results from this study show that both microplastics and natural fibres of anthropogenic origin are common throughout the pelagic environment along the Spanish Mediterranean coast.

M. Compa, A. Ventero, M. Iglesias and al., Marine Pollution Bulletin, Volume 128, March 2018, Pages 89–96

The article

Advertisements

Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)

Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125–250 µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone.

Sandra Rainieri, Nadia Conlledo, Bodil K. Larsen, Kit Granby, Alejandro Barranco, Environmental Research, Volume 162, April 2018, Pages 135-143

The article

In vitro effects of virgin microplastics on fish head-kidney leucocyte activities

Microplastics are well-documented pollutants in the marine environment that result from production or fragmentation of larger plastic items. The knowledge about the direct effects of microplastics on immunity, including fish, is still very limited. We investigated the in vitro effects of microplastics [polyvinylchloride (PVC) and polyethylene (PE)] on gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) head-kidney leucocytes (HKLs). After 1 and 24 h of exposure of HKLs with 0 (control), 1, 10 and 100 mg mL−1 MPs in a rotatory system, cell viability, innate immune parameters (phagocytic, respiratory burst and peroxidase activities) and the expression of genes related to inflammation (il1b), oxidative stress (nrf2, prdx3), metabolism of xenobiotics (cyp1a1, mta) and cell apoptosis (casp3) were studied. Microplastics failed to affect the cell viability of HKLs. In addition, they provoke very few significant effects on the main cellular innate immune activities, as decrease on phagocytosis or increase in the respiratory burst of HKLs with the highest dose of microplastics tested. Furthermore, microplastics failed to affect the expression of the selected genes on sea bass or seabream, except the nrf2 which was up-regulated in seabream HKLs incubated with the highest doses. Present results seem to suggest that continue exposure of fish to PVC or PE microplastics could impair fish immune parameters probably due to the oxidative stress produced in the fish leucocytes.

Cristóbal Espinosa, José María García Beltrán, María Angeles Esteban, Alberto Cuesta, Environmental Pollution, Volume 235, April 2018, Pages 30–38

The article

Incidental ingestion of meso- and macro-plastic debris by benthic and demersal fish

We examine the ingestion of meso- and macro-plastics by teleost fish and elasmobrachs with benthic- demersal dwelling habits, analysing the occurrence of this litter type on the diet of 39 of these species over the North-western Iberian Shelf Sea between 1999 and 2016. Plastic consumption seems to be incidental, occurring only in 7 of the 39 species examined, and in a very low proportion (< 0.3% of individuals in all cases). The highest rates were found among benthic feeding elasmobranchs, including Leucoraja naevus, Scyliorhinus canicula and Galeus spp., the two latter being opportunistic scavengers. While our study rules out a high occurrence of meso- and macro- plastics in benthic fauna, the presence of micro-plastics in the diet of these species is still a major concern, as the deep sea is possibly a natural sink for these litter particles.

López-López, Lucía, Preciado, Izaskun and al., Food Webs, Available online 23 December 2017, In Press

The article

Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea

Micro-plastic particles in the world’s oceans represent a serious threat to both human health and marine ecosystems. Once released into the aquatic environment plastic litter is broken down to smaller pieces through photo-degradation and the physical actions of waves, wind, etc. The resulting particles may become so small that they are readily taken up by fish, crustaceans and mollusks. There is mounting evidence for the uptake of plastic particles by marine organisms that form part of the human food chain and this is driving urgent calls for further and deeper investigations into this pollution issue.

The present study aimed at investigating for the first time the occurrence, amount, typology of microplastic litter in the gastrointestinal tract of Solea solea and its spatial distribution in the northern and central Adriatic Sea. This benthic flatfish was selected as it is a species of high commercial interest within the FAO GFCM (General Fisheries Commission for the Mediterranean) area 37 (Mediterranean and Black Sea) where around 15% of the overall global Solea solea production originates.

The digestive tract contents of 533 individuals collected in fall during 2014 and 2015 from 60 sampling sites were examined for microplastics. These were recorded in 95% of sampled fish, with more than one microplastic item found in around 80% of the examined specimens. The most commonly found polymers were polyvinyl chloride, polypropylene, polyethylene, polyester, and polyamide, 72% as fragments and 28% as fibers. The mean number of ingested microplastics was 1.73 ± 0.05 items per fish in 2014 and 1.64 ± 0.1 in 2015. PVC and PA showed the highest densities in the northern Adriatic Sea, both inshore and off-shore while PE, PP and PET were more concentrated in coastal areas with the highest values offshore from the port of Rimini.

G. Pellini, A. Gomiero, T. Fortibuoni and al., Environmental Pollution, Volume 234, March 2018, Pages 943–952

The article

Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea

This book focuses on different aspects of microplastic pollution, offering authors and readers the opportunity to share their knowledge, identify issues and propose solutions and actions to face this environmental threat. Although plastic pollution is a well-known global problem, the recent discovery of microplastics and nanoplastics in seas and oceans represents a very alarming new environmental challenge. The book offers comprehensive insights into the origins of the problem, its impact on marine environments, particularly the Mediterranean Sea and coasts, and the current research trends aimed at finding technical solutions to mitigate the phenomenon.

Part of the Springer Water book series (SPWA). Editors : Mariacristina Cocca, Emilia Di Pace, Maria Emanuela Errico, Gennaro Gentile, Alessio Montarsolo, Raffaella Mossotti, 2018

The book

Do polyethylene microplastic beads alter the intestinal uptake of Ag in rainbow trout (Oncorhynchus mykiss)? Analysis of the MP vector effect using in vitro gut sacs

Microplastic (MP) vector effects have been well described in the literature but surprisingly little is in known about the impact of MPs on the intestinal uptake of contaminants. The present study aimed to determine whether the intestinal fate of Ag was affected by the presence of polyethylene MP beads. Ag (added as 110mAg) was introduced into the lumen of rainbow trout (Oncorhynchus mykiss) anterior/mid-intestine gut sac preparations as Ag only, Ag and MPs (co-exposure) and Ag-incubated MPs (where Ag was adsorbed to the MP). Results show that after 3 h exposure the distribution of accumulated Ag between the four intestinal compartments (mucus layer, mucosal epithelium, muscle layer and serosal saline) was not affected by either MP condition when compared to Ag alone (p > 0.05, One way ANOVA). Across all treatment groups mucus layer binding dominated (54.2–72.6%) whereas relatively little Ag was transported to the blood compartment (i.e. combined muscle layer and serosal saline compartments, 8.5–15.0%). Accompanying adsorption/desorption studies were performed in relevant media. Over 24 h, 60.6± 2.9% of the available Ag in artificial freshwater adhered to the surface of the PE MPs. In pH adjusted luminal fluids (pH 2.2, 4.1, 7.4 and 9.8) that span the range of conditions encountered within the rainbow trout digestive tract, there was almost complete dissociation at acidic pHs within 3 h (<2% remaining on MPs at both pH 2.2 and pH 4.1). Such pHs are typical of piscine stomach. Based on our finding we suggest that following the ingestion of MPs with adsorbed pollutants, desorption would occur prior to entering the site of uptake. The MPs themselves have no impact on the trans-epithelial transport of the contaminant, but the net result of the MP vector effect is to potentially introduce labile contaminant forms into the intestine.

F. Khan, D. Boyle, E. Chang, N. R. Bury, Environmental Pollution,Volume 231, Part 1, December 2017, Pages 200-206

The article