New Study Reveals Global Water Supply Contaminated by Microplastic Fibers

Microplastics — extremely small pieces (less than 5 mm) of plastic debris resulting from the disposal and breakdown of consumer products and industrial waste — have been found in tap water around the globe, according to a new report by Orb Media, a D.C.-based nonprofit digital newsroom. The discovery has led to a call from the scientific community for urgent research on microplastics’ implications for human health.

Designed by Dr. Sherri Mason of the State University of New York at Fredonia and Elizabeth Wattenberg at the University of Minnesota, School of Public Health, the tap water study screened 159 half liter drinking water samples from 14 countries: Cuba, Ecuador, France, Germany, India, Indonesia, Ireland, Italy, Lebanon, Slovakia, Switzerland, Uganda, the UK and the US. Overall, 83 percent of the samples were contaminated with plastic fibers.

European countries demonstrated the lowest level of contamination, though this was still 72 percent. The average number of microplastics found in each 500ml sample ranged from 1.9 in Europe to 4.8 in the US. (…) (, 11/09/2017, Orb media)

The news

Orb media – Invisibles plastics


Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA

Aquatic environments are sinks for anthropogenic contamination, whether chemical or solid pollutants. Microfibers shed from clothing and other textiles contribute to this problem. These can be plastic or non-plastic origin. Our aim was to investigate the presence and distribution of both types of anthropogenic microfibers along the length of the Hudson River, USA. Surface grab samples were collected and filtered through a 0.45 μm filter paper. Abundance of fibers was determined after subtraction of potential contamination. 233 microfibers were recorded in 142 samples, averaging 0.98 microfibers L− 1. Subsequent micro-FTIR showed half of the fibers were plastic while the other half were non-plastic, but of anthropogenic origin. There was no relationship between fiber abundance, wastewater treatment plant location or population density. Extrapolating from this data, and using available hydrographic data, 34.4% of the Hudson River’s watershed drainage area contributes an average 300 million anthropogenic microfibers into the Atlantic Ocean per day.

R. Miller, A. J. R. Watts, B. O. Winslow and al., Marine Pollution Bulletin, Available online 22 July 2017, In Press, Corrected Proof

The article

Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa

Microplastics are widespread in aquatic environments and can be ingested by a wide range of organisms. They can also be transferred along food webs. Estuaries and other tidal wetlands may be particularly prone to this type of pollution due to their particular hydrological characteristics and sewage input, but few studies have compared wetlands with different anthropogenic pressure. Furthermore, there is no information on microplastic transfer to secondary intertidal consumers such as shorebirds.

We analysed intertidal sediments, macroinvertebrates and shorebirds, from three important wetlands along the Eastern Atlantic (Tejo estuary, Portugal; Banc d’Arguin, Mauritania and Bijagós archipelago, Guinea-Bissau), in order to evaluate the prevalence and transfer of microplastics along the intertidal food web. We further investigated variables that could explain the distribution of microplastics within the intertidal areas of the Tejo estuary.

Microfibers were recorded in a large proportion of sediment samples (91%), macroinvertebrates (60%) and shorebird faeces (49%). μ-FTIR analysis indicated only 52% of these microfibers were composed of synthetic polymers (i.e. plastics). Microfiber concentrations were generally higher in the Tejo and lower in the Bijagós, with intermediate values for Banc d’Arguin, thus following a latitudinal gradient. Heavier anthropogenic pressure in the Tejo explains this pattern, but the relatively high concentrations in a pristine site like the Banc d’Arguin demonstrate the spread of pollution in the oceans. Similar microfiber concentrations in faeces of shorebirds with different foraging behaviour and similar composition of fibres collected from invertebrate and faeces suggest shorebirds mainly ingest microfibers through their prey, confirming microfiber transfer along intertidal food webs.

Within the Tejo estuary, concentration of microfibers in the sediment and bivalves were positively related with the percentage of fine sediments and with the population size of the closest township, suggesting that hydrodynamics and local domestic sewage are the main factors influencing the distribution of microfibers.

Pedro M. Lourenço, Catarina Serra-Gonçalves, Joana Lia Ferreira, Teresa Catry, polJose P. Granadeiro, Environmental Pollution, Volume 231, Part 1, December 2017, Pages 123-133

The article

Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids)

The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1–1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems.

L. Pietrelli, A. Di Gennaro, P. Menegoni and al., Environmental Pollution, Volume 229, October 2017, Pages 1032-1036

The article

Dirty laundry : Are your clothes polluting the ocean?

In an indoor “Manchester-drizzle-simulating” rain room at the University of Leeds, and in a laundry lab in Plymouth, research is revealing the unexpected environmental cost of the very clothes on our backs. (…)

And in a recent lab study, they found that polyester and acrylic clothing shed thousands of plastic fibres each time it was washed- sending another source of plastic pollution down the drain and, eventually, into the ocean. (…) (, 6/07/2017)

The news

Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast

This study evaluated the influence of foraging preferences on microplastic ingestion by six marine fish species from the Texas Gulf Coast. A total of 1381 fish were analyzed and 42.4% contained ingested microplastic, inclusive of fiber (86.4%), microbead (12.9% %), and fragment (< 1.0%) forms. Despite a substantial overlap in diet, ordination of ingested prey items clustered samples into distinctive species groupings, reflective of the foraging gradient among species. Orthopristis chrysoptera displayed the lowest overall frequency of microplastic ingestion and the most distinctive ordination grouping, indicating their selective invertebrate foraging preferences. Cluster analysis of O. chrysoptera most closely classified microplastic with the ingestion of benthic invertebrates, whereas the ingestion of microplastic by all other species most closely classified with the ingestion of vegetation and shrimp. O. chrysoptera, as selective invertebrate foragers, are less likely to ingest microplastics than species exhibiting generalist foraging preferences and methods of prey capture.

Colleen A. Peters, Peyton A. Thomas, Kaitlyn B. Rieper, Susan P. Bratton, Marine Pollution Bulletin, Available online 11 July 2017, In Press

The article

Microplastic contamination of intertidal sediments of Scapa Flow, Orkney: A first assessment

The concentration of microplastic particles and fibres was determined in the intertidal sediments at selected sites in Scapa Flow, Orkney, using a super-saturated NaCl flotation technique to extract the plastic and FT-IR spectroscopy to determine the polymer types. Mean concentrations were 730 and 2300 kg− 1 sediment (DW), respectively. Detailed spatial and quantitative analysis revealed that their distribution was a function of proximity to populated areas and associated wastewater effluent, industrial installations, degree of shore exposure and complex tidal flow patterns. Sediment samples from Orkney showed similar levels of microplastic contamination as in two highly populate industrialized mainland UK areas, The Clyde and the Firth of Forth. It was concluded that relative remoteness and a comparative small island population are not predictors of lower microplastic pollution. Furthermore, a larger concerted effort across Scotland and the UK is required to establish a baseline microplastic database for the evaluation of future policy measures.

J. Blumenröder, P. Sechet, J.E. Kakkonen, M.G.J. Hartl, Marine Pollution Bulletin, Available online 11 July 2017, In Press

The article