Government drops opposition to Bill banning microplastics

The Government has reversed a decision to oppose a Labour Party Bill banning the use of microplastics and microbeads in personal care items including scrubs, soaps, lotions and toothpastes.

Minister for Housing Simon Coveney had originally planned to reject the Prohibition of microplastics Bill on the grounds that it could place Ireland in breach of EU Treaty articles on the free movement of goods and that it was flawed in definitions, enforcement and its “level of ambition”.

But in the Dáil on Thursday he told the Bill’s author, Cork East Labour TD Seán Sherlock, that the Government would not oppose the legislation but would probably abstain and allow it to proceed on the basis that “if and when we produce the Government’s legislative response to this whether in the foreshore Bill or in a separate piece of legislation after the work that needs to be done first”. (…) (irishtimes.com, 4/05/2017)

The news

Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent

Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the ‘microbeads’ found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge.

Sherri A. Mason, Danielle Garneau, Rebecca Sutton, Yvonne Chu, Karyn Ehmann, Jason Barnes, Parker Fink, Daniel Papazissimos, Darrin L. Rogers, Environmental Pollution, Volume 218, November 2016, Pages 1045–1054

The article

Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students

Microplastics enter the environment as a result of larger plastic items breaking down (‘secondary’) and from particles originally manufactured at that size (‘primary’). Personal care products are an important contributor of secondary microplastics (typically referred to as ‘microbeads’), for example in toothpaste, facial scrubs and soaps. Consumers play an important role in influencing the demand for these products and therefore any associated environmental consequences. Hence we need to understand public perceptions in order to help reduce emissions of microplastics. This study explored awareness of plastic microbeads in personal care products in three groups: environmental activists, trainee beauticians and university students in South West England. Focus groups were run, where participants were shown the quantity of microbeads found in individual high-street personal care products. Qualitative analysis showed that while the environmentalists were originally aware of the issue, it lacked visibility and immediacy for the beauticians and students. Yet when shown the amount of plastic in a range of familiar everyday personal care products, all participants expressed considerable surprise and concern at the quantities and potential impact. Regardless of any perceived level of harm in the environment, the consensus was that their use was unnatural and unnecessary. This research could inform future communications with the public and industry as well as policy initiatives to phase out the use of microbeads.

A.G. Anderson, J. Grose, S. Pahl, R.C. Thompson, K.J. Wyles, Marine Pollution Bulletin, Volume 113, Issues 1–2, 15 December 2016, Pages 454–460

The article

Cosmetics giants lukewarm on potential UK microplastics ban

Unilever science director, Ian Malcomber, has said that his company hopes a ban on microplastics in cosmetics products in the UK “is not required”, and that his company prefers “industry-led action” through trade associations.

Mr Malcomber joined experts from L’Oréal and Procter & Gamble to give their views at the latest meeting of the House of Commons Environmental Audit Committee inquiry, which was launched in April. (…) (chemicalwatch.com, 30/06/2016)

The news

Evidence of microbeads from personal care product contaminating the sea

Plastic microbeads in personal care products have been identified as a source of marine pollution. Yet, their existence in the environment is rarely reported. During two surface manta trawls in the coastal waters of Hong Kong, eleven blue, spherical microbeads were captured. Their sizes (in diameters) ranged from 0.332 to 1.015 mm. These microbeads possessed similar characteristics in terms of colour, shape and size with those identified and extracted from a facial scrub available in the local market. The FT-IR spectrum of the captured microbeads also matched those from the facial scrub. It was likely that the floating microbeads at the sea surface originated from a facial scrub and they have bypassed or escaped the sewage treatment system in Hong Kong. Timely voluntary or legislative actions are required to prevent more microbeads from entering the aquatic environment.

Pui Kwan Cheung, Lincoln Fok, Marine Pollution Bulletin, Volume 109, Issue 1, 15 August 2016, Pages 582–585

The article