Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data

Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005–2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be possible due to logistical and financial constraints of running government-funded sampling programmes on such large scales.

SE Nelms, C Coombes, LC Foster, TS Galloway, BJ Godley, PK Lindeque, MJ Witt, Science of The Total Environment, Volume 579, 1 February 2017, Pages 1399–1409

The article

Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches

Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches. Initial assessments of the AAB records quantified sources and abundance of AL on Lake Michigan beaches, and showed that plastic AL was > 75% of AL on beaches across all five Great Lakes. However, AAB records have not yet been used to examine patterns of AL density and composition among beaches of all different substrate types (e.g., parks, rocky, sandy), across land-use categories (e.g., rural, suburban, urban), or among seasons (i.e., spring, summer, and fall). We found that most AL on beaches are consumer goods that most likely originate from beach visitors and nearby urban environments, rather than activities such as shipping, fishing, or illegal dumping. We also demonstrated that urban beaches and those with sand rather than rocks had higher AL density relative to other sites. Finally, we found that AL abundance is lowest during the summer, between the US holidays of Memorial Day (last Monday in May) and Labor Day (first Monday in September) at the urban beaches, while other beaches showed no seasonality. This research is a model for utilizing datasets collected by volunteers involved in citizen science programs, and will contribute to AL management by offering priorities for AL types and locations to maximize AL reduction.

Anna Vincent, Nate Drag, Olga Lyandres, Sarah Neville, Timothy Hoellein, Science of The Total Environment, Volume 577, 15 January 2017, Pages 105–112

The article

The role of public participation GIS (PPGIS) and fishermen’s perceptions of risk in marine debris mitigation in the Bay of Fundy, Canada

From nano-plastics to large sunken vessels, marine debris presents a threat to humans and ecosystems worldwide. Fishermen’s knowledge of the sources of, and risks posed by medium to large debris derived from fishing, aquaculture, and other marine industries provides important context for debris mitigation. Public participation geographic information systems (PPGIS) can address these risks by integrating subjective and objective spatial data on human and environmental impacts and risks. We integrated fishermen’s perceptions and experiences with marine debris with spatial data using PPGIS. We developed a georeferenced database of fishermen’s experiences with marine debris, collected during focus groups and at various other meetings in Southwest New Brunswick. This layer was used to integrate baseline data with subjective perceptions of the ecological, economic, and navigational risks associated with marine debris in the Bay of Fundy, Canada. We also documented the physical, technical, political, and regulatory challenges to marine debris mitigation. These challenges highlight the social and environmental processes that complicate any projects that attempt to develop uncontested spatial representations of marine debris. Finally, we discuss the potential of PPGIS to address these challenges by fostering communication, coordinating various marine activities, helping stakeholders set priorities for clean-up, and implementing collaborative clean-up projects.

Allain J. Barnett, Melanie G. Wiber, Michael P. Rooney, Donna G. Curtis Maillet, Ocean & Coastal Management, Volume 133, December 2016, Pages 85–94

The article

Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfoundland destined for human consumption collected through citizen science methods

Marine microplastics are a contaminant of concern because their small size allows ingestion by a wide range of marine life. Using citizen science during the Newfoundland recreational cod fishery, we sampled 205 Atlantic cod (Gadus morhua) destined for human consumption and found that 5 had eaten plastic, an ingestion prevalence rate of 2.4%. This ingestion rate for Atlantic cod is the second lowest recorded rate in the reviewed published literature (the lowest is 1.4%), and the lowest for any fish in the North Atlantic. This is the first report for plastic ingestion in fish in Newfoundland, Canada, a province dependent on fish for sustenance and livelihoods.

Max Liboiron, France Liboiron, Emily Wells, Natalie Richárd, Alexander Zahara, Charles Mather, Hillary Bradshaw, Judyannet Murichi, Marine Pollution Bulletin, Volume 113, Issues 1–2, 15 December 2016, Pages 428–437

The article