Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins

Microplastic and microfiber pollution has been documented in all major ocean basins. Microfibers are one of the most common microparticle pollutants along shorelines. Over 9 million tons of fibers are produced annually; 60% are synthetic and ∼25% are non-synthetic. Non-synthetic and semi-synthetic microfibers are infrequently documented and not typically included in marine environment impact analyses, resulting in underestimation of a potentially pervasive and harmful pollutant. We present the most extensive worldwide microparticle distribution dataset using 1-liter grab samples (n = 1393). Our citizen scientist driven study shows a global microparticle average of 11.8 ± 24.0 particles L−1 (mean ± SD), approximately three orders of magnitude higher than global model predictions. Open ocean samples showed consistently higher densities than coastal samples, with the highest concentrations found in the polar oceans (n = 51), confirming previous empirical and theoretical studies. Particles were predominantly microfibers (91%) and 0.1–1.5 mm in length (77%), a smaller size than those captured in the majority of surface studies. Using μFT-IR we determined the material types of 113 pieces; 57% were classified as synthetic, 12% as semi-synthetic, and 31% as non-synthetic. Samples were taken globally, including from coastal environments and understudied ocean regions. Some of these sites are emerging as areas of concentrated floating plastic and anthropogenic debris, influenced by distant waste mismanagement and/or deposition of airborne particles. Incorporation of smaller-sized microfibers in oceanographic models, which has been lacking, will help us to better understand the movement and transformation of synthetic, semi-synthetic and non-synthetic microparticles in regional seas and ocean basins.

A.P.W. Barrows, S.E. Cathey, C.W. Petersen, Environmental Pollution, Volume 237, June 2018, Pages 275–284

The article


Spatio-temporal variation of anthropogenic marine debris on Chilean beaches

We examined the hypothesis that in an emerging economy such as Chile the abundances of Anthropogenic Marine Debris (AMD) on beaches are increasing over time. The citizen science program Científicos de la Basura (“Litter Scientists”) conducted three national surveys (2008, 2012 and 2016) to determine AMD composition, abundance, spatial patterns and temporal trends. AMD was found on all beaches along the entire Chilean coast. Highest percentages of AMD in all surveys were plastics and cigarette butts, which can be attributed to local sources (i.e. beach users). The Antofagasta region in northern Chile had the highest abundance of AMD compared with all other zones. Higher abundances of AMD were found at the upper stations from almost all zones. No significant tendency of increasing or decreasing AMD densities was observed during the 8 years covered by our study, which suggests that economic development alone cannot explain temporal trends in AMD densities.

Valeria Hidalgo-Ruz, Daniela Honorato-Zimmer, Magdalena Gatta-Rosemary, Paloma Nuñez, Iván A. Hinojosa, Martin Thiel, Marine Pollution Bulletin, Volume 126, January 2018, Pages 516–524

The article

Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life

Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9–524 g m− 2 and were similar to those from densely populated areas. Plastics accounted for > 80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems.

Melanie Bergmann, Birgit Lutz, Mine B. Tekman, Lars Gutow, Marine Pollution Bulletin, Volume 125, Issues 1–2, 15 December 2017, Pages 535-540

The article

Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data

Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005–2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be possible due to logistical and financial constraints of running government-funded sampling programmes on such large scales.

SE Nelms, C Coombes, LC Foster, TS Galloway, BJ Godley, PK Lindeque, MJ Witt, Science of The Total Environment, Volume 579, 1 February 2017, Pages 1399–1409

The article

Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches

Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches. Initial assessments of the AAB records quantified sources and abundance of AL on Lake Michigan beaches, and showed that plastic AL was > 75% of AL on beaches across all five Great Lakes. However, AAB records have not yet been used to examine patterns of AL density and composition among beaches of all different substrate types (e.g., parks, rocky, sandy), across land-use categories (e.g., rural, suburban, urban), or among seasons (i.e., spring, summer, and fall). We found that most AL on beaches are consumer goods that most likely originate from beach visitors and nearby urban environments, rather than activities such as shipping, fishing, or illegal dumping. We also demonstrated that urban beaches and those with sand rather than rocks had higher AL density relative to other sites. Finally, we found that AL abundance is lowest during the summer, between the US holidays of Memorial Day (last Monday in May) and Labor Day (first Monday in September) at the urban beaches, while other beaches showed no seasonality. This research is a model for utilizing datasets collected by volunteers involved in citizen science programs, and will contribute to AL management by offering priorities for AL types and locations to maximize AL reduction.

Anna Vincent, Nate Drag, Olga Lyandres, Sarah Neville, Timothy Hoellein, Science of The Total Environment, Volume 577, 15 January 2017, Pages 105–112

The article

The role of public participation GIS (PPGIS) and fishermen’s perceptions of risk in marine debris mitigation in the Bay of Fundy, Canada

From nano-plastics to large sunken vessels, marine debris presents a threat to humans and ecosystems worldwide. Fishermen’s knowledge of the sources of, and risks posed by medium to large debris derived from fishing, aquaculture, and other marine industries provides important context for debris mitigation. Public participation geographic information systems (PPGIS) can address these risks by integrating subjective and objective spatial data on human and environmental impacts and risks. We integrated fishermen’s perceptions and experiences with marine debris with spatial data using PPGIS. We developed a georeferenced database of fishermen’s experiences with marine debris, collected during focus groups and at various other meetings in Southwest New Brunswick. This layer was used to integrate baseline data with subjective perceptions of the ecological, economic, and navigational risks associated with marine debris in the Bay of Fundy, Canada. We also documented the physical, technical, political, and regulatory challenges to marine debris mitigation. These challenges highlight the social and environmental processes that complicate any projects that attempt to develop uncontested spatial representations of marine debris. Finally, we discuss the potential of PPGIS to address these challenges by fostering communication, coordinating various marine activities, helping stakeholders set priorities for clean-up, and implementing collaborative clean-up projects.

Allain J. Barnett, Melanie G. Wiber, Michael P. Rooney, Donna G. Curtis Maillet, Ocean & Coastal Management, Volume 133, December 2016, Pages 85–94

The article

Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfoundland destined for human consumption collected through citizen science methods

Marine microplastics are a contaminant of concern because their small size allows ingestion by a wide range of marine life. Using citizen science during the Newfoundland recreational cod fishery, we sampled 205 Atlantic cod (Gadus morhua) destined for human consumption and found that 5 had eaten plastic, an ingestion prevalence rate of 2.4%. This ingestion rate for Atlantic cod is the second lowest recorded rate in the reviewed published literature (the lowest is 1.4%), and the lowest for any fish in the North Atlantic. This is the first report for plastic ingestion in fish in Newfoundland, Canada, a province dependent on fish for sustenance and livelihoods.

Max Liboiron, France Liboiron, Emily Wells, Natalie Richárd, Alexander Zahara, Charles Mather, Hillary Bradshaw, Judyannet Murichi, Marine Pollution Bulletin, Volume 113, Issues 1–2, 15 December 2016, Pages 428–437

The article