Transport of microplastics in coastal seas

Microplastic pollution of the marine environment has received increasing attention from scientists, the public, and policy makers over the last few years. Marine microplastics predominantly originate near the coast and can remain in the nearshore zone for some time. However, at present, there is little understanding of the fate and transport of microplastics in coastal regions. This paper provides a comprehensive overview of the physical processes involved in the movement of microplastics from estuaries to the continental shelf. The trajectory and speed of microplastics are controlled by their physical characteristics (density, size, and shape) and ocean dynamic conditions (wind, waves, tides, thermohaline gradients, and the influence of benthic sediments). Microplastic particles can be subjected to beaching, surface drifting, vertical mixing, and biofouling, as well as bed-load and suspended load transport processes, until reaching terminal deposition on beaches, in coastal marshes, in benthic sediments or until they are carried by ocean currents to subtropical convergence zones. The dynamic interaction of released microplastics with the shoreline is regulated by onshore/offshore transport, which is impacted by the source location as well as the geometry, vegetation, tidal regime, and wave direction. Wind and wave conditions dominate surface drifting of buoyant particles through Ekman drift, windage, and Stokes drift mechanisms. Neustic microplastic particles travel in the subsurface because of vertical mixing through wind-driven Langmuir circulation and heat cycling. Increasing accumulation of microplastics in benthic sediments needs to be quantitatively explored in terms of biofouling, deposition, entrainment, and transport dynamics. Further studies are required to understand the following: 1) the primary parameters (e.g., windage, terminal velocity, diffusivity, critical shear stress) that determine microplastic transport in different pathways; 2) dynamic distribution of microplastics in various coastal landscapes (e.g., wetlands, beaches, estuaries, lagoons, barrier islands, depocenters) regulated by hydrodynamic conditions; and 3) interactions between the physical transport processes and biochemical reactions (degradation, flocculation, biofouling, ingestions).

Hua Zhang, Estuarine, Coastal and Shelf Science, Volume 199, 5 December 2017, Pages 74-86

The article

Advertisements

Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China

Chemical pollution in the microplastics has been concerned worldwide as pollutants might potentially transfer from the environment to living organisms via plastics. Here, we investigate organophosphorus esters (OPEs) and phthalic acid esters (PAEs) in the beached microplastics collected from 28 coastal beaches of the Bohai and Yellow Sea in north China. The analyzed microplastics included polyethylene (PE) pellets and fragments, polypropylene (PP) flakes and fragments and polystyrene (PS) foams. The tris-(2-chloroethyl)-phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP) and di-(2-ethylhexyl) phthalate (DEHP) were the three predominant compounds found overall. The maximum Σ4 OPEs concentration was 84,595.9 ng g− 1, almost three orders of magnitude higher than the maximum Σ9 PAEs concentration. The PP flakes and PS foams contained the highest concentrations of the additives in contrast to the PE pellets which contained the lowest. The high concentration level of carcinogenic chlorinated OPEs and DEHP with endocrine disrupting effects implied the suggested potential hazards to coastal organisms. Spatial differences and compositional variation of the additives among the different microplastics suggests different origins and residence times in the coastal environment. This indicates that the characteristics of chemical additives might be a useful approach when tracing sources of microplastics in the environment.

Haibo Zhang, Qian Zhou, Zhiyong Xie and al., Science of The Total Environment, Available online 28 October 2017, In Press

The article

Microplastic and tar pollution on three Canary Islands beaches: An annual study

Marine debris accumulation was analyzed from three exposed beaches of the Canary Islands (Lambra, Famara and Las Canteras). Large microplastics (1–5 mm), mesoplastics (5–25 mm) and tar pollution were assessed twice a month for a year. There was great spatial and temporal variability in the Canary Island coastal pollution. Seasonal patterns differed at each location, marine debris concentration depended mainly of local-scale wind and wave conditions. The most polluted beach was Lambra, a remote beach infrequently visited. The types of debris found were mainly preproduction resin pellets, plastic fragments and tar, evidencing that pollution was not of local origin, but it cames from the open sea. The levels of pollution were similar to those of highly industrialized and contaminated regions. This study corroborates that the Canary Islands are an area of accumulation of microplastics and tar rafted from the North Atlantic Ocean by the southward flowing Canary Current.

A. Herrera, M. Asensio, I. Martínez, A. Santana, T. Packard, M. Gómez, Marine Pollution Bulletin, Available online 6 November 2017, In Press

The article

Spatial variability in the concentrations of metals in beached microplastics

Heavy metals and microplastics have been considered as threats to the marine environment and the interactions between these two pollutants are poorly understood. This study investigates the interactions between metals adsorbed in pellets collected randomly from 19 beaches along the coast of São Paulo State in southeastern Brazil, comparing these levels with those in virgin pellets. The samples were analyzed for Al, Cr, Cu, Fe, Mn, Sn, Ti and Zn by inductively coupled plasma optical emission spectroscopy (ICP-OES). The polymers were solubilized via acid digestion. The highest levels occurred with Fe (227.78 mg kg− 1 – Itaguaré) and Al (45.27 mg kg− 1 – Guaraú) in the same areas, which are closer to the Port of Santos. The metal adsorption on pellets collected is greater than that on virgin pellets. In this context, pellets can be considered to be a carrier for the transport of metals in the environment, even in small quantities.

M.C. Vedolin, C.Y.S. Teophilo, A. Turra, R.C.L. Figueira, Marine Pollution Bulletin, Available online 13 October 2017, In Press

The article

Variation in plastic abundance at different lake beach zones – A case study

Image 2Plastic particles in marine and freshwater environments span from macroscopic to microscopic size classes. Each may have a different impact on individuals, populations and ecosystems, but still the wide variety of methods used in beach sediment sampling inhibit comparisons among studies and therefore hampers a risk assessment. A large portion of the uncertainties is due to differing sampling strategies.

By quantifying the alongshore distribution of macro- and microplastic particles within five beaches of Lake Garda, we aim to shed light on the accumulation behavior of microplastic particles at an exemplary lake which might give indications for potential sampling zones. The identification of plastic at the single particle level with a spatial resolution down to 1 μm was performed by Raman microspectroscopy. Given the time consuming approach we reduced the number of samples in the field but increased the spatial area where a single sample was taken, by utilizing a transect approach in combination with sediment cores (5 cm depth).

The study revealed that, in comparison to the water line and the high-water line, the drift line of all five beaches always contained plastic particles. Since the drift line accumulate particulate matter on a relatively distinct zone, it will enable a comparable sampling of microplastic particles. The applied sampling approach provided a representative method for quantifying microplastic down to 1 μm on a shore consisting of pebbles and sand. Hence, as first step towards a harmonization of beach sediment sampling we suggest to perform sampling at the drift line, although further methodological improvements are still necessary.

Hannes K. Imhof, Alexandra C.Wiesheu, Philipp M. Anger and al., Science of The Total Environment, Volumes 613–614, 1 February 2018, Pages 530-537

The article

Beach litter dynamics on Mediterranean coasts: Distinguishing sources and pathways

We assessed amounts, composition and net accumulation rates every ~ 15 days of beach macro litter (≥ 2.5 cm) on 4 Mediterranean beaches, on Corfu island, N. Ionian Sea, taking into account natural and anthropogenic drivers. Average net accumulation rate on all beaches was found 142 ± 115 N/100 m/15 d. By applying a Generalized Linear Model (GzLM) it was shown that sea transport is the dominant pathway affecting the amount and variability in beach litter loadings. Principal Component Analysis (PCA) on compositional data and indicator items discerned two more pathways of beach litter, i.e. in situ litter from beach goers and wind and/or runoff transport of litter from land. By comparing the PCA results to those from a simple item to source attribution, it is shown that regardless their source litter items arrive at beaches from various pathways. Our data provide baseline knowledge for designing monitoring strategies and for setting management targets.

Michael Prevenios, Christina Zeri, Catherine Tsangaris and al., Marine Pollution Bulletin, Available online 10 October 2017, In Press

The article

A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment

Here we present the large-scale distribution of microplastic contamination in beach sediment across Europe. Sediment samples were collected from 23 locations across 13 countries by citizen scientists, and analysed using a standard operating procedure. We found significant variability in the concentrations of microplastics, ranging from 72 ± 24 to 1512 ± 187 microplastics per kg of dry sediment, with high variability within sampling locations. Three hotspots of microplastic accumulation (> 700 microplastics per kg of dry sediment) were found. There was limited variability in the physico-chemical characteristics of the plastics across sampling locations. The majority of the microplastics were fibrous, < 1 mm in size, and blue/black in colour. In addition, using Raman spectrometry we identified particles as polyester, polyethylene, and polypropylene. Our research is the first large spatial-scale analysis of microplastics on European beaches giving insights into the nature and extent of the microplastic challenge.

Froukje A.E. Lots, Paul Behrens, Martina G. Vijver, Alice A. Horton, Thijs Bosker, Marine Pollution Bulletin, Volume 123, Issues 1–2, 15 October 2017, Pages 219-226

The article