Spatial variability in the concentrations of metals in beached microplastics

Heavy metals and microplastics have been considered as threats to the marine environment and the interactions between these two pollutants are poorly understood. This study investigates the interactions between metals adsorbed in pellets collected randomly from 19 beaches along the coast of São Paulo State in southeastern Brazil, comparing these levels with those in virgin pellets. The samples were analyzed for Al, Cr, Cu, Fe, Mn, Sn, Ti and Zn by inductively coupled plasma optical emission spectroscopy (ICP-OES). The polymers were solubilized via acid digestion. The highest levels occurred with Fe (227.78 mg kg− 1 – Itaguaré) and Al (45.27 mg kg− 1 – Guaraú) in the same areas, which are closer to the Port of Santos. The metal adsorption on pellets collected is greater than that on virgin pellets. In this context, pellets can be considered to be a carrier for the transport of metals in the environment, even in small quantities.

M.C. Vedolin, C.Y.S. Teophilo, A. Turra, R.C.L. Figueira, Marine Pollution Bulletin, Available online 13 October 2017, In Press

The article


Variation in plastic abundance at different lake beach zones – A case study

Image 2Plastic particles in marine and freshwater environments span from macroscopic to microscopic size classes. Each may have a different impact on individuals, populations and ecosystems, but still the wide variety of methods used in beach sediment sampling inhibit comparisons among studies and therefore hampers a risk assessment. A large portion of the uncertainties is due to differing sampling strategies.

By quantifying the alongshore distribution of macro- and microplastic particles within five beaches of Lake Garda, we aim to shed light on the accumulation behavior of microplastic particles at an exemplary lake which might give indications for potential sampling zones. The identification of plastic at the single particle level with a spatial resolution down to 1 μm was performed by Raman microspectroscopy. Given the time consuming approach we reduced the number of samples in the field but increased the spatial area where a single sample was taken, by utilizing a transect approach in combination with sediment cores (5 cm depth).

The study revealed that, in comparison to the water line and the high-water line, the drift line of all five beaches always contained plastic particles. Since the drift line accumulate particulate matter on a relatively distinct zone, it will enable a comparable sampling of microplastic particles. The applied sampling approach provided a representative method for quantifying microplastic down to 1 μm on a shore consisting of pebbles and sand. Hence, as first step towards a harmonization of beach sediment sampling we suggest to perform sampling at the drift line, although further methodological improvements are still necessary.

Hannes K. Imhof, Alexandra C.Wiesheu, Philipp M. Anger and al., Science of The Total Environment, Volumes 613–614, 1 February 2018, Pages 530-537

The article

Beach litter dynamics on Mediterranean coasts: Distinguishing sources and pathways

We assessed amounts, composition and net accumulation rates every ~ 15 days of beach macro litter (≥ 2.5 cm) on 4 Mediterranean beaches, on Corfu island, N. Ionian Sea, taking into account natural and anthropogenic drivers. Average net accumulation rate on all beaches was found 142 ± 115 N/100 m/15 d. By applying a Generalized Linear Model (GzLM) it was shown that sea transport is the dominant pathway affecting the amount and variability in beach litter loadings. Principal Component Analysis (PCA) on compositional data and indicator items discerned two more pathways of beach litter, i.e. in situ litter from beach goers and wind and/or runoff transport of litter from land. By comparing the PCA results to those from a simple item to source attribution, it is shown that regardless their source litter items arrive at beaches from various pathways. Our data provide baseline knowledge for designing monitoring strategies and for setting management targets.

Michael Prevenios, Christina Zeri, Catherine Tsangaris and al., Marine Pollution Bulletin, Available online 10 October 2017, In Press

The article

A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment

Here we present the large-scale distribution of microplastic contamination in beach sediment across Europe. Sediment samples were collected from 23 locations across 13 countries by citizen scientists, and analysed using a standard operating procedure. We found significant variability in the concentrations of microplastics, ranging from 72 ± 24 to 1512 ± 187 microplastics per kg of dry sediment, with high variability within sampling locations. Three hotspots of microplastic accumulation (> 700 microplastics per kg of dry sediment) were found. There was limited variability in the physico-chemical characteristics of the plastics across sampling locations. The majority of the microplastics were fibrous, < 1 mm in size, and blue/black in colour. In addition, using Raman spectrometry we identified particles as polyester, polyethylene, and polypropylene. Our research is the first large spatial-scale analysis of microplastics on European beaches giving insights into the nature and extent of the microplastic challenge.

Froukje A.E. Lots, Paul Behrens, Martina G. Vijver, Alice A. Horton, Thijs Bosker, Marine Pollution Bulletin, Available online 12 October 2017, In Press

The article

Rocky shoreline protocols miss microplastics in marine debris surveys (Fogo Island, Newfoundland and Labrador)

Most anthropogenic marine debris shoreline studies are conducted on sandy shores, rather than rocky coastlines. We amended a standardized protocol for monitoring marine debris on a high-loading beach composed of small rocks and cobbles in Newfoundland, Canada. Our protocol had two parts: we conducted stratified sampling to a depth of ~ 20 cm below the surface of the rocks (standing survey), and surveyed accumulation of items on the surface of rocks every other day (loading survey). We found the vast majority of smaller items were below the surface. Only 17.2% of debris were microplastics (< 5 mm). Types of anthropogenic debris differed significantly between the standing survey and the loading survey. We found no relationship between either wind direction or wind speed, and distributions of debris. This study allows for a better understanding of marine debris detection along rocky coasts, and the limitations of protocols for studying them.

Matt McWilliams, Max Liboiron, Yolanda Wiersma, Marine Pollution Bulletin, Available online 13 October 2017, In Press

The article

Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life

Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9–524 g m− 2 and were similar to those from densely populated areas. Plastics accounted for > 80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems.

Melanie Bergmann, Birgit Lutz, Mine B. Tekman, Lars Gutow, Marine Pollution Bulletin, Available online 28 September 2017, In Press

The article

Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States

To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics at the sites sampled here.

Xubiao Yu, Samantha Ladewig, Shaowu Bao, Catherine A. Toline, Stefanie Whitmire, Alex T. Chow, Science of The Total Environment, Volumes 613–614, 1 February 2018, Pages 298-305

The article