Microplastic pollution on Caribbean beaches in the Lesser Antilles

Here we investigate microplastics contamination on beaches of four islands of the Lesser Antilles (Anguilla, St. Barthélemy, St. Eustatius and St. Martin/Maarten). These islands are close to the North Atlantic subtropical gyre, which contains high levels of microplastics. On average 261 ± 6 microplastics/kg of dry sand were found, with a maximum of 620 ± 96 microplastics on Grandes Cayes, Saint Martin. The vast majority of these microplastics (>95%) were fibers. Levels of microplastics differed among islands, with significantly lower levels found in St. Eustatius compared to the other Islands. No difference in microplastic levels was found between windward and leeward beaches. Our research provides a detailed study on microplastics on beaches in the Lesser Antilles. These results are important in developing a deeper understanding of the extent of the microplastic challenge within the Caribbean region, a hotspot of biodiversity.

Thijs Bosker, Lucia Guaita, Paul Behrens, Marine Pollution Bulletin, Volume 133, August 2018, Pages 442–447

The article


Plastic pollution in islands of the Atlantic Ocean

Marine plastic pollution is present in all oceans, including remote oceanic islands. Despite the increasing number of articles on plastic pollution in the last years, there is still a lack of studies in islands, that are biodiversity hotspots when compared to the surrounding ocean, and even other recognized highly biodiverse marine environments. Articles published in the peer reviewed literature (N = 20) were analysed according to the presence of macro (>5 mm) and microplastics (<5 mm) on beaches and the marine habitats immediately adjacent to 31 islands of the Atlantic Ocean and Caribbean Sea. The first articles date from the 1980s, but most were published in the 2000s. Articles on macroplastics were predominant in this review (N = 12). Beaches were the most studied environment, possibly due to easy access. The main focus of most articles was the spatial distribution of plastics associated with variables such as position of the beach in relation to wind and currents. Very few studies have analysed plastics colonization by organisms or the identification of persistent organic pollutants (POPs). Islands of the North/South Atlantic and Caribbean Sea were influenced by different sources of macroplastics, being marine-based sources (i.e., fishing activities) predominant in the Atlantic Ocean basin. On the other hand, in the Caribbean Sea, land-based sources were more common.

Raqueline C. P. Monteiro, Juliana A. Ivar do Sul, Monica F. Costa, Environmental Pollution, Volume 238, July 2018, Pages 103–110

The article

Nanoplastic in the North Atlantic Subtropical Gyre

Plastics can be found in all ecosystems across the globe. This type of environmental pollution is important, even if its impact is not fully understood. The presence of small plastic particles at the micro- and nanoscales is of growing concern, but nanoplastic has not yet been observed in natural samples. In this study, we examined four size fractions (meso-, large micro-, small micro-, and nanoplastics) of debris collected in the North Atlantic subtropical gyre. To obtain the nanoplastic portion, we isolated the colloidal fraction of seawater. After ultrafiltration, the occurrence of nanoscale particles was demonstrated using dynamic light scattering experiments. The chemical fingerprint of the colloids was obtained by pyrolysis coupled with gas chromatography–mass spectrometry. We demonstrated that the signal was anthropogenic and attributed to a combination of plastics. The polymer composition varied among the size classes. At the micro- and nanoscales, polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene were observed. We also observed changes in the pyrolytic signals of polyethylene with decreasing debris size, which could be related to the structural modification of this plastic as a consequence of weathering.

Alexandra Ter Halle, Laurent Jeanneau, Marion Martignac, Emilie Jardé, Boris Pedrono, Laurent Brach and Julien Gigault, Environ. Sci. Technol., 51 (23), pp 13689–13697, 2017

Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?

Monitoring the presence of microplastics (MP) in marine organisms is currently of high importance. This paper presents the qualitative and quantitative MP contamination of two bivalves from the French Atlantic coasts: the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas). Three factors potentially influencing the contamination were investigated by collecting at different sampling sites and different seasons, organisms both wild and cultivated. Inter- and intra-species comparisons were also achieved. MP quantity in organisms was evaluated at 0.61 ± 0.56 and 2.1 ± 1.7 MP per individual respectively for mussels and oysters. Eight different polymers were identified. Most of the MPs were fragments; about a half of MPs were grey colored and a half with a size ranging from 50 to 100 μm for both studied species. Some inter-specific differences were found but no evidence for sampling site, season or mode of life effect was highlighted.

Nam Ngoc Phuong, Laurence Poirier, Quoc Tuan Pham, Fabienne Lagarde, atlAurore Zalouk-Vergnoux, Marine Pollution Bulletin, Available online 26 October 2017, In Press

The article

Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean

Microplastics are widespread in the natural environment and present numerous ecological threats. While the ultimate fate of marine microplastics are not well known, it is hypothesized that the deep sea is the final sink for this anthropogenic contaminant. This study provides a quantification and characterisation of microplastic pollution ingested by benthic macroinvertebrates with different feeding modes (Ophiomusium lymani, Hymenaster pellucidus and Colus jeffreysianus) and in adjacent deep water > 2200 m, in the Rockall Trough, Northeast Atlantic Ocean. Despite the remote location, microplastic fibres were identified in deep-sea water at a concentration of 70.8 particles m−3, comparable to that in surface waters. Of the invertebrates examined (n = 66), 48% ingested microplastics with quantities enumerated comparable to coastal species. The number of ingested microplastics differed significantly between species and generalized linear modelling identified that the number of microplastics ingested for a given tissue mass was related to species and not organism feeding mode or the length or overall weight of the individual. Deep-sea microplastics were visually highly degraded with surface areas more than double that of pristine particles. The identification of synthetic polymers with densities greater and less than seawater along with comparable quantities to the upper ocean indicates processes of vertical re-distribution. This study presents the first snapshot of deep ocean microplastics and the quantification of microplastic pollution in the Rockall Trough. Additional sampling throughout the deep-sea is required to assess levels of microplastic pollution, vertical transportation and sequestration, which have the potential to impact the largest global ecosystem.

Winnie Courtene-Jones, Brian Quinn, Stefan F. Gary, Andrew O.M. Mogg, Bhavani E. Narayanaswamy, Environmental Pollution, Volume 231, Part 1, December 2017, Pages 271-280

The article

Spatial distribution of marine debris on the seafloor of Moroccan waters

Marine debris pollution is considered as a worldwide problem and a direct threat to the environment, economy and human health. In this paper, we provide the first quantitative assessment of debris on the seafloor of the southern part of the economic exclusive waters of Morocco. The data were collected in a scientific trawl survey carried out from 5 to 25 October 2014 between (26N) to (21N) covering different stratums of depths (from 10 to 266 m) and following a sampling network of 100 stations distributed randomly in the study area. A total of 603 kg of debris was collected and sorted into five main categories: plastic, metal, rubber, textiles and glass. Over 50% of collected items was made by plastic, 94% of them are the plastic fishing gear used to capture the Octopus vulgaris. The analysis of the distribution shows that anthropogenic debris is present in the majority of the prospected area (∼ 47,541 km2) with different densities ranging from 0 to 1768 (± 298,15) kg/km2. The spatial autocorrelation approach using GIS shows that the concentration of this debris is correlated very well with a set of factors such as the proximity to fishing activity sites. Moreover, the mechanism of transportation and dispersion was influenced by the hydrodynamic properties of the region.

S. Loulad, R. Houssa, H Rhinane and al., Marine Pollution Bulletin, Available online 24 July 2017, In Press, Corrected Proof

The article

Strandings of NE Atlantic gorgonians

Northeast coral gardens provide vital breeding and feeding habitats for fishes of conservation and commercial importance. Such habitats are increasingly at risk of destruction as a result of over fishing, ocean warming, acidification and marine litter.

A key cause for concern regarding the vulnerability of coral gardens to damage from any source is their slow growth rate, and thereby their ability to recover from damage. Hence protected areas are being put in place, which exclude the use of towed demersal fishing gear.

Citizen scientists observed that gorgonian coral (Pink Sea Fans) skeletons were stranding on beaches entangled in marine debris (sea fangles) across southwest England. Further, SCUBA divers reported that gorgonian corals were being caught up and damaged in lost fishing gear and other marine litter.

To determine the cause of the damage to coral gardens, sea fangles were collected and analysed.

The sea fangles were made up of a diverse range of litter from fishing and domestic sources, however, the majority comprised of fishing gear (P < 0.05).

Marine Protected Areas can protect coral gardens from direct fishing pressure, but risks still remain from ghost fishing pressure, demonstrating the need for sources of litter into the environment to be reduced and existing litter removed.

The EU Marine Strategy Framework Directive (MSFD) outlines targets for marine litter by 2020. This study highlights the importance of adhering to the MSFD and/or creating more ambitious regulation if the UK re-write existing legislation following BREXIT.

E.V. Sheehan, A. Rees, D. Bridger, T. Williams, J.M. Hall-Spencer, Biological Conservation, Volume 209, May 2017, Pages 482–487

The article