Microplastic pollution, a threat to marine ecosystem and human health: a short review

Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.

Shivika Sharma, Subhankar Chatterjee, Environmental Science and Pollution Research, , Volume 24, Issue 27, pp 21530–21547

The article

Advertisements

Microplastics releasing from personal care and cosmetic products in China

Microplastics (MPs) have become a major global issue; their release from various products affects the aquatic environment, especially marine ecosystems. As a primary source of MPs, personal care and cosmetics products (PCCPs) containing MPs contribute to this environmental risk. We visited several supermarket chains in Beijing, China to identify PCCPs containing MPs. Overall, 7.1% of facial cleansers contained MPs, with an average weight of 25.04 ± 10.69 mg MP/g and average size of 313 ± 130 μm; whereas, 2.2% of shower gel products contained an average weight of 17.80 ± 7.50 mg MPs/g with an average size of 422 ± 185 μm. The majority of MPs were made of polyethylene, based on Raman and Fourier transform-infrared spectra analyses, while only a few were made of walnut shells and carbon particles. Finally, estimated 39 tons MPs were released into the environment based on PCCPs use in China based on available data.

Kun Lei, Fei Qiao, Qing Liu and al., Marine Pollution Bulletin, Available online 11 September 2017, In Press

The article

Microplastic pollution in the surface waters of the Bohai Sea, China

The ubiquitous presence and persistency of microplastics in aquatic environments is of particular concern because these pollutants represent an increasing threat to marine organisms and ecosystems. An identification of the patterns of microplastic distribution will help to understand the scale of their potential effect on the environment and on organisms. In this study, the occurrence and distribution of microplastics in the Bohai Sea are reported for the first time. We sampled floating microplastics at 11 stations in the Bohai Sea using a 330 μm trawling net in August 2016. The abundance, composition, size, shape and color of collected debris samples were analyzed after pretreatment. The average microplastic concentration was 0.33 ± 0.34 particles/m3. Micro-Fourier transform infrared spectroscopy analysis showed that the main types of microplastics were polyethylene, polypropylene, and polystyrene. As the size of the plastics decreased, the percentage of polypropylene increased, whereas the percentages of polyethylene and polystyrene decreased. Plastic fragments, lines, and films accounted for most of the collected samples. Accumulation at some stations could be associated with transport and retention mechanisms that are linked to wind and the dynamics of the rim current, as well as different sources of the plastics.

Weiwei Zhang, Shoufeng Zhang, Juying Wang, Yan Wang, Jingli Mu, Ping Wang, Xinzhen Lin, Deyi Ma, Environmental Pollution, Volume 231, Part 1, December 2017, Pages 541–548

Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa

Microplastics are widespread in aquatic environments and can be ingested by a wide range of organisms. They can also be transferred along food webs. Estuaries and other tidal wetlands may be particularly prone to this type of pollution due to their particular hydrological characteristics and sewage input, but few studies have compared wetlands with different anthropogenic pressure. Furthermore, there is no information on microplastic transfer to secondary intertidal consumers such as shorebirds.

We analysed intertidal sediments, macroinvertebrates and shorebirds, from three important wetlands along the Eastern Atlantic (Tejo estuary, Portugal; Banc d’Arguin, Mauritania and Bijagós archipelago, Guinea-Bissau), in order to evaluate the prevalence and transfer of microplastics along the intertidal food web. We further investigated variables that could explain the distribution of microplastics within the intertidal areas of the Tejo estuary.

Microfibers were recorded in a large proportion of sediment samples (91%), macroinvertebrates (60%) and shorebird faeces (49%). μ-FTIR analysis indicated only 52% of these microfibers were composed of synthetic polymers (i.e. plastics). Microfiber concentrations were generally higher in the Tejo and lower in the Bijagós, with intermediate values for Banc d’Arguin, thus following a latitudinal gradient. Heavier anthropogenic pressure in the Tejo explains this pattern, but the relatively high concentrations in a pristine site like the Banc d’Arguin demonstrate the spread of pollution in the oceans. Similar microfiber concentrations in faeces of shorebirds with different foraging behaviour and similar composition of fibres collected from invertebrate and faeces suggest shorebirds mainly ingest microfibers through their prey, confirming microfiber transfer along intertidal food webs.

Within the Tejo estuary, concentration of microfibers in the sediment and bivalves were positively related with the percentage of fine sediments and with the population size of the closest township, suggesting that hydrodynamics and local domestic sewage are the main factors influencing the distribution of microfibers.

Pedro M. Lourenço, Catarina Serra-Gonçalves, Joana Lia Ferreira, Teresa Catry, polJose P. Granadeiro, Environmental Pollution, Volume 231, Part 1, December 2017, Pages 123-133

The article

The occurrence of microplastic contamination in littoral sediments of the Persian Gulf, Iran

Microplastics (MPs; <5 mm) in aquatic environments are an emerging contaminant of concern due to their possible ecological and biological consequences. This study addresses that MP quantification and morphology to assess the abundance, distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide. MPs were found in 80% of the samples. Across all sites, fiber particles were the most dominate shape (88%), followed by films (11.2%) and fragments (0.8%). There were significant differences in MP particle concentration between sampling sites (p value <0.05). The sediments with the highest numbers of MPs were from sites in the vicinity of highly populated centers and municipal effluent discharges. FTIR analysis showed that polyethylene (PE), nylon, and polyethylene terephthalate (PET) were the most abundant polymer types. More than half of the observed MPs (56%) were in the size category of 1–4.7 mm length, with the remaining particles (44%) being in the size range of 10 μm to <1 mm. Compared to literature data from other regions, intertidal sediments in the Persian Gulf cannot be characterized as a hot spot for MP pollution. The present study could, however, provide useful background information for further investigations and management policies to understand the sources, transport, and potential effects on marine life in the Persian Gulf.

Abolfazl Naji, Zinat Esmaili, Sherri A. Mason, A. Dick Vethaak, Environmental Science and Pollution Research, pp 1–10, 14 July 2017

The article

Release of polyester and cotton fibers from textiles in machine washings

Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 105 to 1.3 × 107 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 1014) and 411,000 kg (4.9 × 1014) in Finland (population 5.5 × 106). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.

Markus SillanpääPirjo Sainio, Environmental Science and Pollution Research, pp 1–9, July, 01, 2017

The article

The Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment

In the aquatic environment, Microplastic (MP; < 5 mm) is a cause of concern due to its persistence and potential adverse effects on biota. Studies on microlitter impacts are mostly based on virgin and spherical polymer particles as model MP. However, in pelagic and benthic environments, surfaces are always colonized by microorganisms forming so-called biofilms. The influence of such biofilms on the fate and potential effects of MP presents a current knowledge gap. Here, we review the physical interactions of early microbial colonization on plastic surfaces and their reciprocal influence on the weathering processes and vertical transport as well as sorption and release of contaminants by MP. Possible ecological consequences of biofilm formation on MP, such as trophic transfer of MP particles and potential adverse effects of MP, are virtually unknown. However, the evidence is accumulating that by modifying the physical properties of the particles, the biofilm-plastic interactions have the capacity to influence the fate and impacts MP may have. There is an urgent research need to better understand these interactions and increase ecological relevance of current laboratory testing by simulating field conditions where microbial life is a key driver of the biogeochemical processes.

Christoph D. Rummel, Annika Jahnke, Elena Gorokhova, Dana Kühnel, and Mechthild Schmitt-Jansen, Environ. Sci. Technol. Lett., 2017, 4 (7), pp 258–267