Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica)

This is the first survey to investigate the occurrence and extent of plastic contamination in sediments collected in Terra Nova Bay (Ross Sea, Antarctica). Plastic debris extracted from 31 samples of sediments were counted, weighted and identified by Fourier-transform infrared spectroscopy (FT-IR). All sediment samples contained plastics: a total of 1661 items of debris (3.14 g) were recorded from the 31 samples of sediment. Plastic particles in the samples ranged from 0.3 to 22 mm in length. Fibres were the most frequent type of small plastics debris detected. In terms of abundance, microplastics (< 5 mm) accounted for 78.4% of debris. 9 polymer types were found: the most common material (94.13% by weight) was styrene-butadiene-styrene copolymer (SBS), widely used in pneumatic tires, etc. A decreasing concentration of plastic debris at increasing distances from the Mario Zucchelli Base was evidenced.

Cristina Munari, Vanessa Infantini, Marco Scoponi, Eugenio Rastelli, Cinzia Corinaldesi, Michele Mistri, Marine Pollution Bulletin, Vol. 122 (1-2), 15 September 2017

The article

Advertisements

Plastic pollution in the Antarctic worse than expected

The continent is considered to be a pristine wilderness compared to other regions and was thought to be relatively free from plastic pollution. However new findings by scientists from University of Hull and British Antarctic Survey (BAS) have revealed that recorded levels of microplastics are five times higher than you would expect to find from local sources such as research stations and ships. (…) (bas.ac.uk, British Antarctic Survey, 19/06/2017)

The news

The study

Microplastics in the Antarctic marine system: An emerging area of research

It was thought that the Southern Ocean was relatively free of microplastic contamination; however, recent studies and citizen science projects in the Southern Ocean have reported microplastics in deep-sea sediments and surface waters. Here we reviewed available information on microplastics (including macroplastics as a source of microplastics) in the Southern Ocean. We estimated primary microplastic concentrations from personal care products and laundry, and identified potential sources and routes of transmission into the region. Estimates showed the levels of microplastic pollution released into the region from ships and scientific research stations were likely to be negligible at the scale of the Southern Ocean, but may be significant on a local scale. This was demonstrated by the detection of the first microplastics in shallow benthic sediments close to a number of research stations on King George Island. Furthermore, our predictions of primary microplastic concentrations from local sources were five orders of magnitude lower than levels reported in published sampling surveys (assuming an even dispersal at the ocean surface). Sea surface transfer from lower latitudes may contribute, at an as yet unknown level, to Southern Ocean plastic concentrations. Acknowledging the lack of data describing microplastic origins, concentrations, distribution and impacts in the Southern Ocean, we highlight the urgent need for research, and call for routine, standardised monitoring in the Antarctic marine system.

Catherine L. Waller, Huw J. Griffiths, Claire M. Waluda and al., Science of The Total Environment, Volume 598, 15 November 2017, Pages 220–227

The article

Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR

This is the first survey to investigate the occurrence and extent of microplastic (MPs) contamination in sub surface waters collected near-shore and off-shore the coastal area of the Ross Sea (Antarctica). Moreover, a non-invasive method to analyze MPs, consisting in filtration after water sampling and analysis of the dried filter through Fourier Transform Infrared Spectroscopy (FTIR) 2D Imaging, using an FPA detector, was proposed. The non-invasiveness of analytical set-up reduces potential bias and allows subsequent analysis of the filter sample for determination of other classes of contaminants. MPs ranged from 0.0032 to 1.18 particle per m3 of seawater, with a mean value of 0.17 ± 0.34 particle m−3, showing concentrations lower than those found in the oceans worldwide. MPs included fragments (mean 71.9 ± 21.6%), fibers (mean 12.7 ± 14.3%), and others (mean 15.4 ± 12.8%). The presence of different types of MPs was confirmed by FTIR spectroscopy, with predominant abundance of polyethylene and polypropylene. The potential environmental impact arising from scientific activities, such as marine activities for scientific purposes, and from the sewage treatment plant, was also evidenced.

Alessandra Cincinelli, Costanza Scopetani, David Chelazzi and al., Chemosphere, Volume 175, May 2017, Pages 391–400

The article