Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures

Our aim was to quantify microplastic ingestion by fish assemblages in two tropical Brazilian estuaries and to evaluate whether biological and ecological factors influence the ingestion of microplastics by fish species. Of 2233 fish from both estuaries (from 69 species) examined in this study, 9% of the individuals (24 species) had microplastics in their gut contents. Microplastic ingestion occurred irrespective of fish size and functional group. The diet of fish species was analyzed based on prey items identified in the fish’s full stomach contents and five feeding guilds were defined. Microplastics were common throughout all feeding guilds. Low (average ingestion values 1.06 ± 0.30 items/total fish) but widespread occurrence among estuaries also indicates proliferation of microplastic pollution. Our findings highlight the need to focus on assemblage level studies to understand the real magnitude of the problem and emphasize the urgency of mitigation measures directed at microplastic pollution in estuarine ecosystems.

A.L. Vendel, F. Bessa, V.E.N. Alves, A.L.A. Amorim, J. Patrício, A.R.T. Palma, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 448–455

The article

Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity

This study investigated the direct and indirect toxic effects of microplastics and nanoplastics toward zebrafish (Danio rerio) larvae locomotor activity. Results showed that microplastics alone exhibited no significant effects except for the upregulated zfrho visual gene expression; whereas nanoplastics inhibited the larval locomotion by 22% during the last darkness period, and significantly reduced larvae body length by 6%, inhibited the acetylcholinesterase activity by 40%, and upregulated gfap, α1-tubulin, zfrho and zfblue gene expression significantly. When co-exposed with 2 μg/L 17 α-ethynylestradiol (EE2), microplastics led to alleviation on EE2’s inhibition effect on locomotion, which was probably due to the decreased freely dissolved EE2 concentration. However, though nanoplastics showed stronger adsorption ability for EE2, the hypoactivity phenomenon still existed in the nanoplastics co-exposure group. Moreover, when co-exposed with a higher concentration of EE2 (20 μg/L), both plastics showed an enhanced effect on the hypoactivity. Principal component analysis was performed to reduce data dimensions and four principal components were reconstituted in terms of oxidative stress, body length, nervous and visual system related genes explaining 84% of total variance. Furthermore, oxidative damage and body length reduction were evaluated to be main reasons for the hypoactivity. Therefore, nanoplastics alone suppressed zebrafish larvae locomotor activity and both plastic particles can change the larvae swimming behavior when co-exposed with EE2. This study provides new insights into plastic particles’ effects on zebrafish larvae, improving the understanding of their environmental risks to the aquatic environment.

Qiqing Chen, Michael Gundlach, Shouye Yang and al., Science of The Total Environment, Volumes 584–585, 15 April 2017, Pages 1022–1031

The article

Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater

Probabilistic environmental quality criteria for Naphthalene (Nap), Phenanthrene (Phe), Fluoranthene (Flu), Pyrene (Pyr), Triclosan (TCS), Tributyltin (TBT), Chlorpyrifos (CPY), Diuron (DUR), γ-Hexaclorocyclohexane (γ-HCH), Bisphenol A (BPA) and 4-Nonylphenol (4-NP) were derived from acute toxicity data using saltwater species representative of marine ecosystems, including algae, mollusks, crustaceans, echinoderms and chordates. Preferably, data concerns sublethal endpoints and early life stages from bioassays conducted in our laboratory, but the data set was completed with a broad literature survey. The Water Quality Criteria (WQC) obtained for TBT (7.1·10−3 μg L−1) and CPY (6.6· 10−3 μg L−1) were orders of magnitude lower than those obtained for PAHs (ranging from 3.75 to 45.2 μg L−1), BPA (27.7 μg L−1), TCS (8.66 μg L−1) and 4-NP (1.52 μg L−1). Critical values for DUR and HCH were 0.1 and 0.057 μg L−1 respectively. Within this context, non-selective toxicants could be quantitatively defined as those showing a maximum variability in toxicity thresholds (TT) of 3 orders of magnitude across the whole range of marine diversity, and a cumulative distribution of the TT fitting to a single log-logistic curve, while for selective toxicants variability was consistently found to span 5 orders of magnitude and the TT distribution showed a bimodal pattern. For the latter, protective WQC must be derived taking into account the SSD of the sensitive taxa only.

I. Durán, R. Beiras, Environmental Pollution, Volume 224, May 2017, Pages 384–391

The article

Assessment of marine debris on the coastal wetland of Martil in the North-East of Morocco

Plastic waste at the coastal wetland in Martil beach in the North-East of Morocco is one of the problems that have appeared recently. This study aims to characterize the marine debris in the coast of Martil during the year 2015. The sampling is seasonally by type and size. The result shows, for the macro debris, the abundance of plastic (57%), lumber and paper (21.93%), cloth and fabric (7.8%), glass (5.42%), metal (4.40%), and rubber (3.4%). Micro debris is also present in the area in several forms such as wood, plants, and others by 75,63%. This was followed by the foam (26,95%), line (7,8%), and the film (1,23%). The seasonal variation (S1: January–March and S3: July to September) are the most polluted months of the year. The sources of marine debris are mainly tourism (beach users), land (run off), and commercial fishing in the four seasons of the year.

Adel Alshawafi, Mohamed Analla, Ebrahim Alwashali, Mustapha Aksissou, Marine Pollution Bulletin, Volume 117, Issues 1–2, 15 April 2017, Pages 302–310

The article

Microplastics as contaminants in commercially important seafood species

The ingestion of microplastic fragments, spheres, and fibers by marine mollusks, crustaceans, and fish, including a number of commercially important species, appears to be a widespread and pervasive phenomenon. Evidence is also growing for direct impacts of microplastic ingestion on physiology, reproductive success and survival of exposed marine organisms, and transfer through food webs, although the ecological implications are not yet known. Concerns also remain over the capacity for microplastics to act as vectors for harmful chemical pollutants, including plastic additives and persistent organic pollutants, although their contribution must be evaluated alongside other known sources. The potential for humans, as top predators, to consume microplastics as contaminants in seafood is very real, and its implications for health need to be considered. An urgent need also exists to extend the geographical scope of studies of microplastic contamination in seafood species to currently underrepresented areas, and to finalize and adopt standardized methods and quality-assurance protocols for the isolation, identification, and quantification of microplastic contaminants from biological tissues. Such developments would enable more robust investigation of spatial and temporal trends, thereby contributing further evidence as a sound basis for regulatory controls. Despite the existence of considerable uncertainties and unknowns, there is already a compelling case for urgent actions to identify, control, and, where possible, eliminate key sources of both primary and secondary microplastics before they reach the marine environment.

D. Santillo, K. Miller, P. Johnston, Integrated Environmental Assessment and Management, Volume 13, Number 3, pp. 516–521, May 2017

The article

Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion

Distribution of microplastics particles (MPs) in the water column is investigated on the base of 95 water samples collected from various depths in the Baltic Sea Proper in 2015–2016. Fibres are the prevalent type of MPs: 7% of the samples contained small films; about 40% had (presumably) paint flakes, while 63% contained coloured fibres in concentrations from 0.07 to 2.6 items per litre. Near-surface and near-bottom layers (defined as one tenth of the local depth) have 3–5 times larger fibre concentrations than intermediate layers. Laboratory tests demonstrated that sinking behaviour of a small and flexible fibre can be complicated, with 4-fold difference in sinking velocity for various random fibres’ curvature during its free fall. Numerical tests on transport of fibres in the Baltic Sea Proper were performed using HIROMB reanalysis data (2007) for the horizontal velocity field and laboratory order-of-magnitude estimates for the sinking velocity of fibres. The model takes into account (i) motion of fibres together with currents, (ii) their very slow sinking, and (iii) their low re-suspension threshold. Sensitivity of the final distribution of fibres to variations of those parameters is examined. These experiments are the first step towards modelling of transport of fibres in marine environment and they seem to reproduce the main features of fibres distribution quite well.

A. Bagaev, A. Mizyuk, L. Khatmullina, I. Isachenko, I. Chubarenko, Science of The Total Environment, Volumes 599–600, 1 December 2017, Pages 560–571

The article

Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders

Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface.

Debroas Didier, Mone Anne, Ter Halle Alexandra, Science of The Total Environment, Volumes 599–600, 1 December 2017, Pages 1222–1232

The article