Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type

It is important to understand the fragmentation processes and mechanisms of plastic litter to predict microplastic production in the marine environment. In this study, accelerated weathering experiments were performed in the laboratory, with ultraviolet (UV) exposure for up to 12 months followed by mechanical abrasion (MA) with sand for 2 months. Fragmentation of low-density polyethylene (PE), polypropylene (PP), and expanded polystyrene (EPS) was evaluated under conditions that simulated a beach environment. PE and PP were minimally fragmented by MA without photooxidation by UV (8.7 ± 2.5 and 10.7 ± 0.7 particles/pellet, respectively). The rate of fragmentation by UV exposure duration increased more for PP than PE. A 12-month UV exposure and 2-month MA of PP and PE produced 6084 ± 1061 and 20 ± 8.3 particles/pellet, respectively. EPS pellets were susceptible to MA alone (4220 ± 33 particles/pellet), while the combination of 6 months of UV exposure followed by 2 months of MA produced 12,152 ± 3276 particles/pellet. The number of fragmented polymer particles produced by UV exposure and mechanical abrasion increased with decreasing size in all polymer types. The size-normalized abundance of the fragmented PE, PP, and EPS particles according to particle size after UV exposure and MA was predictable. Up to 76.5% of the initial EPS volume was unaccounted for in the final volume of pellet produced particle fragments, indicating that a large proportion of the particles had fragmented into undetectable submicron particles.

Young Kyoung Song, Sang Hee Hong, Mi Jang and al., Environ. Sci. Technol., Article ASAP, 2017

The article


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s