How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant

Wastewater treatment plants (WWTPs) can offer a solution to reduce the point source input of microlitter and microplastics into the environment. To evaluate the contributing processes for microlitter removal, the removal of microlitter from wastewater during different treatment steps of mechanical, chemical and biological treatment (activated sludge) and biologically active filter (BAF) in a large (population equivalent 800 000) advanced WWTP was examined. Most of the microlitter was removed already during the pre-treatment and activated sludge treatment further decreased the microlitter concentration. The overall retention capacity of studied WWTP was over 99% and was achieved after secondary treatment. However, despite of the high removal performance, even an advanced WWTP may constitute a considerable source of microlitter and microplastics into the aquatic environment given the large volumes of effluent discharged constantly. The microlitter content of excess sludge, dried sludge and reject water were also examined. According to the balance analyses, approximately 20% of the microlitter removed from the process is recycled back with the reject water, whereas 80% of the microlitter is contained in the dried sludge. The study also looked at easy microlitter sampling protocol with automated composite samplers for possible future monitoring purposes.

Julia Talvitie, Anna Mikola, Outi Setälä, Mari Heinonen, Arto Koistinen, Water Research, Volume 109, 1 February 2017, Pages 164–172

The article

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s