Application of a comprehensive extraction technique for the determination of poly- and perfluoroalkyl substances (PFASs) in Great Lakes Region sediments

A comprehensive method to extract perfluoroalkane sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluoroalkyl phosphinic acids (PFPiAs) and perfluoroalkyl phosphonic acids (PFPAs) from sediment and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed and applied to sediment cores from three small isolated lakes (Plastic Lake, Lake 442, Lake Tettegouche) and Lake Ontario in the Great Lakes Region. Recoveries of the target compounds using the optimized acetonitrile/sodium hydroxide extraction ranged from 73% to 120%. The greatest concentrations of per- and polyfluorinated alkyl substances (PFASs) were recorded in sediment from Lake Ontario (ΣPFASs 13.1 ng/g), where perfluorooctane sulfonic acid (PFOS) contributed over 80% of the total. Concentrations in Lake Ontario were approximately 1–2 orders of magnitude greater than the more remote lakes subject to primarily atmospheric inputs. Whilst the PFAS contribution in Lake Ontario was dominated by PFOS, the more remote lakes contained sediment with higher proportions of PFCAs. Trace amounts of emerging PFASs (diPAPs and PFPiAs) were found in very recent surface Lake Ontario and remote lake sediments.

Rui Guo, David Megson, Anne L. Myers, Paul A. Helm, Chris Marvin, Patrick Crozier, Scott Mabury, Satyendra P. Bhavsar, Gregg Tomy, Matt Simcik, Brian McCarry, Eric J. Reine, Chemosphere, Volume 164, December 2016, Pages 535–546

The article

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s