Understanding the fragmentation pattern of marine plastic debris

The global estimation of microplastic afloat in the ocean is only approximately 1% of annual global plastic inputs. This reflects fundamental knowledge gaps in the transformation, fragmentation, and fates of microplastics in the ocean. In order to better understand microplastic fragmentation we proceeded to a thorough physicochemical characterization of samples collected from the North Artlantic subtropical gyre during the sea campaign Expedition seventh Continent in May 2014. The results were confronted with a mathematical approach. The introduction of mass distribution in opposition to the size distribution commonly proposed in this area clarify the fragmentation pattern. The mathematical analysis of the mass distribution points out a lack of debris with mass lighter than 1 mg. Characterization by means of microscopy, microtomography, and infrared microscopy gives a better understanding of the behavior of microplastic at sea. Flat pieces of debris (2 to 5 mm in length) typically have one face that is more photodegraded (due to exposure to the sun) and the other with more biofilm, suggesting that they float in a preferred orientation. Smaller debris, with a cubic shape (below 2 mm), seems to roll at sea. All faces are evenly photodegraded and they are less colonized. The breakpoint in the mathematical model and the experimental observation around 2 mm leads to the conclusion that there is a discontinuity in the rate of fragmentation: we hypothesized that the smaller microplastics, the cubic ones mostly, are fragmented much faster than the parallelepipeds.

Alexandra ter Halle, Lucie Ladirat, Xavier Gendre, Dominique Goudouneche, Claire Pusineri, Corinne Routaboul, Christophe Tenailleau, Benjamin Duployer and Emile Perez, Environ. Sci. Technol., 2016, 50 (11), pp 5668–5675
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s