Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: Gold nanoparticles, microplastics and temperature

Knowledge on multi-stressors effects required for environmental and human risk assessments is still limited. This study investigated the combined effects of gold nanoparticles (Au-NP), microplastics (MP) and temperature increase on Pomatoschistus microps, an important prey for several higher level predators, including some species edible to humans. Four null hypotheses were tested: H01: P. microps juveniles do not take up Au-NP through the water; H02: Au-NP (ppb range) are not toxic to juveniles; H03: the presence of MP do not influence the effects of Au-NP on juveniles; H04: temperature increase (20–25 °C) does not change the effects of the tested chemicals on juveniles. Wild juveniles were acclimated to laboratory conditions. Then, they were exposed to Au-NP (≈5 nm diameter) and MP (polyethylene spheres, 1–5 μm diameter), alone and in mixture, at 20 °C and 25 °C, in semi-static conditions. After 96 h of exposure to Au-NP, fish had gold in their body (0.129–0.546 μg/g w.w.) leading to H01 refusal. Exposure to Au-NP alone caused a predatory performance decrease (≈−39%, p < 0.05) leading to H02 refusal. MP did not change the Au-NP toxicity leading to H03 acceptance. Temperature rise significantly increased the concentration of gold in fish exposed to Au-NP (≈2.3 fold), and interacted with chemical effects (e.g. glutathione S-transferases activity) leading to H04 refusal. Thus, the results of this study highlight the importance of further investigating the effects of multi-stressors on marine fish, particularly the effects of temperature on the uptake, biotransformation, elimination and effects of nanoparticles and microplastics, either alone or in mixture. This knowledge is most important to improve the basis for environmental and human risk assessments of these environmental contaminants of high concern.


Pedro Ferreira, Elsa Fonte, M. Elisa Soares, Felix Carvalho, Lúcia Guilhermino, Aquatic Toxicology, Volume 170, Pages 89–103, January 2016

The article



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s