Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment

Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (< 1 mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research.

Chelsea M. Rochman, Tomofumi Kurobe, Ida Flores, Swee J. Teh, Science of The Total Environment, Volume 493, Pages 656–661, 15 September 2014

The article

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s