Assessment of Marine Litter in the Barents Sea, a Part of the Joint Norwegian–Russian Ecosystem Survey

This study presents a large-scale monitoring of marine litter performed in the joint Norwegian–Russian ecosystem monitoring surveys in the period from 2010 to 2016 and contribute to documentation of the extent of marine litter in the Barents Sea. The distribution and abundance of marine litter were calculated by recordings of bycatch from the pelagic trawling in upper 60 m, from bottom trawling close to the sea floor, and floating marine debris at surface by visual observations. The study is comprehensive regarding coverage and number with registrations from 2,265 pelagic trawls and 1,860 bottom trawls, in addition to surface registration between the stations. Marine litter has been recorded from 301 pelagic and 624 of the bottom trawl catches. In total, 784 visual observations of floating marine debris were recorded during the period. Marine litter has been categorized according to volume or weight of the material types plastic, wood, metal, rubber, glass, paper, and textile. Marine litter is observed in the entire Barents Sea and distribution vary with material densities, ocean currents and depth. Plastic dominated number of observations with marine litter, as 72% of surface observations, 94% of pelagic trawls, and 86% of bottom trawls contained plastic. Observations of wood constituted 19% of surface observations, 1% of pelagic trawls, and 17% of bottom trawls with marine litter. Materials from other categories such as metal, rubber, paper, textile, and glass were observed sporadically. Recordings of wood dominated surface observations (61.9 ± 21.6% by volume) and on seafloor (59.4 ± 35.0% by weight), while plastic dominated marine litter observations in upper 60 m depth (86.4 ± 16.5% by weight) over these 7 years. Based on recordings and volume or area covered, mean levels of plastic in the upper 60 m of the Barents Sea were found to 0.011 mg m−3 (pelagic) and 2.9 kg km−2 at sea floor over the study period. Average levels of marine litter (all material types) at the sea floor were found to be 26 kg km−2.

Bjørn E. Grøsvik, Tatiana Prokhorova, Elena Eriksen, Pavel Krivosheya, Per A. Horneland and Dmitry Prozorkevich, Front. Mar. Sci., 06 March 2018

The article

Constraints and Priorities for Conducting Experimental Exposures of Marine Organisms to Microplastics

Marine plastic pollution is a major environmental issue. Given their ubiquitous nature and small dimensions, ingestion of microplastic (MP) and nanoplastic (NP) particles and their subsequent impact on marine life are a growing concern worldwide. Transfers along the trophic chain, including possible translocation, for which the hazards are less understood, are also a major preoccupation. Effects of MP ingestion have been studied on animals through laboratory exposure, showing impacts on feeding activity, reserve depletion and inflammatory responses, with consequences for fitness, notably reproduction. However, most experimental studies have used doses of manufactured virgin microspheres that may not be environmentally realistic. As for most ecotoxicological issues, the environmental relevance of laboratory exposure experiments has recently been debated. Here we review constraints and priorities for conducting experimental exposures of marine wildlife to microplastics based on the literature, feedback from peer reviewers and knowledge gained from our experience. Priorities are suggested taking into account the complexity of microplastics in terms of (i) aggregation status, surface properties and interactions with organic and inorganic materials, (ii) diversity of encountered particles types and concentrations, (iii) particle bioavailability and distribution in experimental tanks to achieve reproducibility and repeatability in estimating effects, and (iv) strict experimental procedures to verify the existence of genuine translocation. Relevant integrative approaches encompass a wide spectrum of methods from -omics to ecophysiological approaches, including modeling, are discussed to provide novel insights on the impacts of MP/NP on marine ecosystems from a long-term perspective. Knowledge obtained in this way would inform stakeholders in such a way as to help them mitigate impacts of the micro- and nano-plastic legacy.

Ika Paul-Pont, Kevin Tallec, Carmen Gonzalez-Fernandez and al., Front. Mar. Sci., 18 July 2018

The article

Ecotoxicological Effects of Chemical Contaminants Adsorbed to Microplastics in the Clam Scrobicularia plana

Although microplastics (MPs) are distributed globally in the marine environment, a great deal of unknowns relating to their ecotoxicological effects on the marine biota remains. Due to their lipophilic nature, microplastics have the potential to adsorb persistent organic pollutants present in contaminated regions, which may increase their detrimental impact once assimilated by organisms. This study investigates the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics (11–13 μm), with and without adsorbed contaminants (benzo[a]pyrene—BaP and perfluorooctane sulfonic acid—PFOS), in the peppery furrow shell clam, Scrobicularia plana. Environmentally relevant concentrations of contaminants (BaP−16.87 ± 0.22 μg g−1 and PFOS−70.22 ± 12.41 μg g−1) were adsorbed to microplastics to evaluate the potential role of plastic particles as a source of chemical contamination once ingested. S. plana were exposed to microplastics, at a concentration of 1 mg L−1, in a water-sediment exposure setup for 14 days. Clams were sampled at the beginning of the experiment (day 0) and after 3, 7, and 14 days. BaP accumulation, in whole clam tissues, was analyzed. A multi-biomarker assessment was conducted in the gills, digestive gland, and haemolymph of clams to clarify the effects of exposure. This included the quantification of antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation levels), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity). Results suggest a potential mechanical injury of gills caused by ingestion of microplastics that may also affect the analyzed biomarkers. The digestive gland seems less affected by mechanical damage caused by virgin microplastic exposure, with the MPs-adsorbed BaP and PFOS exerting a negative influence over the assessed biomarkers in this tissue.

Sarit O’Donovan, Nélia C. Mestre, Serena Abel, Tainá G. Fonseca, Camilla C. Carteny, Bettie Cormier, Steffen H. Keiter and Maria J. Bebianno, Front. Mar. Sci., 26 April 2018

The article

Comparative Effects of Ingested PVC Micro Particles With and Without Adsorbed Benzo(a)pyrene vs. Spiked Sediments on the Cellular and Sub Cellular Processes of the Benthic Organism Hediste diversicolor

Plastic micro litter represents an emerging contaminant as well as a multiple stress agent in aquatic environments. Microplastics are found even in the remote areas of the world. Together with their occurrence in all environmental compartments, there is a growing concern about their potential to adsorb pollutants co-occurring in the environment. At present, little is known about this source of exposure for aquatic organisms in the benthic environment. Exposure conditions were set up to mimick the contribution of microplastics through different exposure routes. Potential biological effects resulting from these exposures were investigated in the model organism Hediste diversicolor, an annelid worm. Cellular effects including alterations of immunological responses, lysosomal compartment changes, mitochondrial activity, oxyradical production and onset of genotoxicity were assessed in coelomocytes while temporary and permanent effects of oxidative stress were also performed at tissue level. In this study polyvinylchloride (PVC) microparticles were shown to adsorb benzo(a)pyrene with a time and dose-dependent relationship. The elevated bioavailability of the model pollutant after ingestion induced a clear pattern of biological responses. Toxicity mainly targeted impairment of cellular functioning and genotoxicity in H. diversicolor coelomocytes, while permanent effects of oxidative stress were observed at tissue level. Coelomocytes responded fast and with a higher degree of sensitivity to the adverse stimuli. The results showed that microplastic particles in sediments may play a significant role as vectors for organic pollutants. The highest adverse responses were observed in those H. diversicolor exposed to sediments spiked with PVC particles pre-incubated with B[a]P when compared against sediments spiked with B[a]P and plastic microparticles separately.

Alessio Gomiero, Pierluigi Strafella, Giulio Pellini, Vera Salvalaggio and Gianna Fabi, Front. Mar. Sci., 05 April 2018

The article

Microplastics as Vehicles of Environmental PAHs to Marine Organisms: Combined Chemical and Physical Hazards to the Mediterranean Mussels, Mytilus galloprovincialis

The ubiquitous occurrence of microplastics (MPs) in the marine environment is raising concern for interactions with marine organisms. These particles efficiently adsorb persistent organic pollutants from surrounding environment and, due to the small size, they are easily available for ingestion at all trophic levels. Once ingested, MPs can induce mechanical damage, sub-lethal effects, and various cellular responses, further modulated by possible release of adsorbed chemicals or additives. In this study, ecotoxicological effects of MPs and their interactions with benzo(a)pyrene (BaP), chosen as a model compound for polycyclic aromatic hydrocarbons (PAHs) were investigated in Mediterranean mussels, Mytilus galloprovincialis. Organisms were exposed for 4 weeks to 10 mg/L of low-density polyethylene (LDPE) microparticles (2.34 * 107 particles/L, size range 20–25 μm), both virgin and pre-contaminated with BaP (15 μg/g). Organisms were also exposed for comparison to BaP dosed alone at 150 ng/L, corresponding to the amount adsorbed on microplastics. Tissue localization of microplastics was histologically evaluated; chemical analyses and a wide battery of biomarkers covering molecular, biochemical and cellular levels allowed to evaluate BaP bioaccumulation, alterations of immune system, antioxidant defenses, onset of oxidative stress, peroxisomal proliferation, genotoxicity, and neurotoxicity. Obtained data were elaborated within a quantitative weight of evidence (WOE) model which, using weighted criteria, provided synthetic hazard indices, for both chemical and cellular results, before their integration in a combined index. Microplastics were localized in hemolymph, gills, and especially digestive tissues where a potential transfer of BaP from MPs was also observed. Significant alterations were measured on the immune system, while more limited effects occurred on the oxidative status, neurotoxicity, and genotoxicity, with a different susceptibility of analyzed pathways, depending on tissue, time, and typology of exposure. Molecular analyses confirmed the general lack of significant transcriptional variations of antioxidant and stress genes. The overall results suggest that microplastics induce a slight cellular toxicity under short-term (28 days) exposure conditions. However, modulation of immune responses, along with bioaccumulation of BaP, pose the still unexplored risk that these particles, under conditions of more chronic exposure (months to years) or interacting with other stressors, may provoke long-term, subtle effects on organisms’ health status.

Lucia Pittura, Carlo G. Avio, Maria E. Giuliani, Giuseppe d’Errico, Steffen H. Keiter, Bettie Cormier, Stefania Gorbi and Francesco Regoli, Front. Mar. Sci., 03 April 2018

The article

Using mussel as a global bioindicator of coastal microplastic pollution

The ubiquity and high bioavailability of microplastics have an unknown risk on the marine environment. Biomonitoring should be used to investigate biotic impacts of microplastic exposure. While many studies have used mussels as indicators for marine microplastic pollution, a robust and clear justification for their selection as indicator species is still lacking. Here, we review published literature from field investigations and laboratory experiments on microplastics in mussels and critically discuss the suitability and challenges of mussels as bioindicator for microplastic pollution. Mussels are suitable bioindicator for microplastic pollution because of their wide distribution, vital ecological niches, susceptibility to microplastic uptake and close connection with marine predators and human health. Field investigations highlight a wide occurrence of microplastics in mussels from all over the world, yet their abundance varies enormously. Problematically, these studies are not comparable due to the lack of a standardized approach, as well as temporal and spatial variability. Interestingly, microplastic abundance in field-collected mussels is closely related to human activity, and there is evidence for a positive and quantitative correlation between microplastics in mussels and surrounding waters. Laboratory studies collectively demonstrate that mussels may be good model organisms in revealing microplastic uptake, accumulation and toxicity. Consequently, we propose the use of mussels as target species to monitor microplastics and call for a uniform, efficient and economical approach that is suitable for a future large-scale monitoring program.

J. Li, A. L. Lusher, J. M. Rotchell and al., Environmental Pollution, Volume 244, January 2019, Pages 522-533

The article

Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?

Plastic pollution represents a pervasive and increasing threat to marine ecosystems worldwide and there is a need to better understand the extent to which microplastics (<5 mm) are ingested by high trophic-level taxa, such as marine mammals. Here, we perform a comprehensive assessment by examining whole digestive tracts of 50 individuals from 10 species whilst operating strict contamination controls. Microplastics were ubiquitous with particles detected in every animal examined. The relatively low number per animal (mean = 5.5) suggests these particles are transitory. Stomachs, however, were found to contain a greater number than intestines, indicating a potential site of temporary retention. The majority of particles were fibres (84%) while the remaining 16% was fragments. Particles were mainly blue and black (42.5% and 26.4%) in colour and Nylon was the most prevalent (60%) polymer type. A possible relationship was found between the cause of death category and microplastic abundance, indicating that animals that died due to infectious diseases had a slightly higher number of particles than those that died of trauma and other drivers of mortality. It is not possible, however, to draw any firm conclusions on the potential biological significance of this observation and further research is required to better understand the potential chronic effects of microplastic exposure on animal health, particularly as marine mammals are widely considered important sentinels for the implications of pollution for the marine environment.

S. E. Nelms, J. Barnett, A. Brownlow, N. J. Davison, R. Deaville, T. S. Galloway, P. K. Lindeque, D. Santillo & B. J. Godley, Scientific Reports, volume 9, Article number: 1075 (2019)

The article